
Data Mining
Prof. Pabitra Mitra

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 31
Artificial Neural Networks – IV

We will continue with multi layer perceptrons. As I had mentioned in the last lecture, we

use a approximation of the step function which is the sigmoid function.

(Refer Slide Time: 00:28)

So, instead of having something like this we will have something like this ok. And the

sigmoid function as this one and it many possible algebraic equation forms are or have

the same for example, 10 hyperbolic another functions have a similar S-shape this is a

separate. One of the popular functions used is this form.

So, the named sigmoid is for a general class of a separate function this is one how

particular form. The other from for example, f x equal to tan hyperbolic x is also of this

form ok. The good thing about this particular form is that you can compute the derivative

of this function from the function itself. So, if you take the derivative with respect to x,

you will find that it is nothing but f x into 1 minus f x. So, the value of the function into 1

minus the value of the function ok. So, that becomes the derivative.

So, if you plot the derivative it is f x into 1 minus f x ok. Sometimes actually a another

form that is popular in deep neural network is that because, you have something called a

rectified linear unit, I will I will quickly explain it.

(Refer Slide Time: 02:21)

Saturates 2 plus 1 and minus 1 in between it is like this. So, this is sigmoid. Sometimes

you have unit which is like this does not saturate just keeps on increasing, all right? Or

maybe in a special case it is just like a proportional type. So, y is some constant time x,

all right?

So, this is about the activation functions. We will so, the multi-layer perceptron has 2

extensions over the normal perceptron, it has hidden layers and instead of a step

activation it uses a sigmoid activation.

(Refer Slide Time: 03:42)

So, that derivative can be easily taken. Now, let us come to the problem of finding out

the proper set of weights.

(Refer Slide Time: 03:53)

So, we will use the same methodology, we will use the same methodology.

So, let me draw the picture I am drawing only one hidden layer. Now let us roughly

drawing it and there are weights oh let this is one one one one ok. So, the as I mentioned

the weight the superscript is the layer numbers from which layer to which layer say layer

m to layer n, and the subscript is that which neuron to each neuron. It h neuron of m th

layer to j th neuron of n th layer that is how I terminate the weight.

So, the steps are that following, initialize all the weights to random values just like the

normal perceptron then, update weights I will explain in detail. And finally, stop when

delta w change in weight value update value is small over successive iterations ok. So,

but well this is same as the multi-layer perceptron; but the only thing is that this weight

update is now more complex than the perceptron.

Now, it has 2 steps. Forward propagation 2 steps and backward propagation, all right?.

So, I will explain this in detail, but the philosophy is something like this, it is like

suppose you are you are you are trying to trying to say park your bike. So, whatever what

do you do? You see the current orientation of the bike and let us place it, if it does not fit

well you use the amount of error as a feedback, amount of mistake you made as a

feedback and change your position again ok.

So; that means, once with the current estimate of the values you try to do that ask an

amount of error you make in the task use that as a feedback to current your current

position to change your current position correct your current position, right? So, you first

so, it is like you are trying to solve some problem if I solve it using whatever knowledge

you have then, you see how much error you have made use that error to correct your

knowledge again ok.

(Refer Slide Time: 08:26)

So, and do this repeatedly till you get the answer to certain accuracy. So, I will explain

this 2 step first I will explain forward propagation. So, this is my network this is my

network and at any stage of the training say maybe the initial stage, or some intermediate

iteration all these links will have some weight value some value may be not the correct

value, but some value some value of the weights in that iteration. Whatever iteration is in

that iteration, whatever I mean the value of tau it then what you do note that.

So, look at every training example let us say x 1, x 2, x 3 ok. So, what we will do? You

have this values and then use the weight value and do 2 steps add up add activation apply

activation function. So, let me properly write it down compute x i overall all the xij all

the inputs, and then apply activation function so, layer by layer. First for this all this

neuron then, their output as input to this for all these neurons all this neuron finally,

output you get.

So; that means, for every input for these set of weights this is output; that means, we are

propagating the input to the output that is why it is called a forward prevention. Now,

this value of output you get it may not match the desired output. So, let me call it as ti let

me call it the desired output S target output ti. So, this why this forward person produces

may not match.

Now, you compute the error, root mean squared how you compute very simple. You

know yi you have computed actual output by forward propagation subtract from t i take

the square add up over all the training examples ok, that is your and sorry and take the

average over all this. So, that is the mean square error. So, forward preparation will find

out this mean square error.

(Refer Slide Time: 13:31)

Now, next step. So, forward propagation it propagated. So, not this not this propagated

the x values the output computed the y take the difference with ti compute error. Now,

this error you feedback as I have mentioned earlier, you feedback and update the w's. So,

I guess update what is the object same form?. Same form w new is w old plus some

learning date eta times delta w ok.

(Refer Slide Time: 15:40)

And this delta w gradient descent simpler take all the weights, I am not there will be

more weights. Take the surface they read whatever you have value of w old is, you move

it to w new move it to w new in the direction of the steepest descent. So, delta w is

derivative of this error function the tangent the steepest descent.

(Refer Slide Time: 16:39)

I will go through the derivation of this I will go through the derivation of the delta E

delta w.

So, this is my sorry, I forgot this half term in the error you can as well add a half term.

So, this is the error propagation. I am just doing it this is the thing, this is the thing and

this is the thing you just follow these steps, right? You just if you just go through the

steps. Now, I am just taking normal derivative ok. So, follow it is they are in the

uploaded slides if you are followed it, then these terms can be further expanded like this

ok.

(Refer Slide Time: 17:55)

When net is this summation over w i j xi from the previous layer ok. And this O is f of

net f is the sigmoid, if you write down from the previous property that f x you get this

which is this. Similarly, if you do this you get this, all right? So, if I go on further this is

my update rule for the weights between output and hidden.

(Refer Slide Time: 19:03)

(Refer Slide Time: 19:14)

Similarly, you can repeat this where output will become the output of the hidden units for

the output input. This way you keep on doing and you call this as a gradient descent back

propagation algorithm. So, this is the. So, called sorry this is the rule ok.

So, now, again there can be a incremental or a gradient; that means, either you take error

to be sum of all the thing or for a single a single update. So, this is batch you can have a

say single so, not batch sorry this is incremental. For every training input you object

earlier as waiting as accumulating over the entire batch obtaining input then updating.

So, that is why this sigma is there, but the functional form is same.

(Refer Slide Time: 21:01)

So, this I summarized here, propagation ok. So, this is nothing, all right? If you look at

the steps just whatever I discussed. This is the step this is the steps whatever I discuss,

this time I am written it down as a single step by step thing.

(Refer Slide Time: 21:29)

So, this is delta this actually is sometime called the called the delta value ok, and delta w.

So, this is this is this delta k delta is actually the derivative we are talking about, and

delta w is running rate times the delta times x ij. If you remember perceptron this delta

was not there beta times x ij only was there ok.

(Refer Slide Time: 22:23)

So, here, is an example if we if we just take this inputs and propagate you will have this

kind of delta values. I want you to go through this examples this is the rule I explained

you should by hand work it out ok.

(Refer Slide Time: 22:47)

So, this is a very powerful rule it is can be generalized to any number of hidden layers

and although some of the, one of the disadvantages if we increase the number of layer it

becomes slow. There is another disadvantage is the convergence.

(Refer Slide Time: 23:06)

In the perceptron the error surface looked like this parabola. So, this gradient descent

will always work. This is perceptron whereas, for the multi-layer perceptron this error

circuit may look like this, these are the local minimas and the system.

Now, depending on your initial initialization random values of the w, your gradient

descent may get you stuck in a, local minima that then a global minima. So, training

always may not give you the least error. So, that may happen, right? So, this is a

limitation of the back-propagation algorithm. There are ways to rectify it by adding

something called a momentum term, which will sort of throw you out of this local

minima. So, that you come here hm. So, those expressions are there.

Here is the momentum term; you can add additional term proportional to the velocity of

that point. So, that it rolls down till it reaches the lowest point.

(Refer Slide Time: 24:59)

So, how to use this multi-layer perceptron? Here is an example, suppose I want to

recognize people or since space biometric. So, you know images are represented as

images are represented as pixels of matrix of pixel values some gray values 0 to 255.

Each of these values you input to a neural network and then have hidden layer, and the

output maybe is the id of the percept sorry again this type of connection may not be there

it is only from one layer to the next layer ok.

And you know that this person’s ID is say 231 another image comes another training

example some other id, this is the desired output this is the output. You repeatedly iterate

through forward propagation, back propagation forward propagation back propagation

till your weight do not change. And that would give you when a new image comes it will

predict which person id it is, right? So, this has been very popular in many applications

this is popular and, I would request you to try out neural network on some problem.

There are some issues like you cannot interpret this is connections you do not know any

logical rule which gives this.

(Refer Slide Time: 26:28)

 (Refer Slide Time: 26:40).

(Refer Slide Time: 26:46)

There is a problem of over fitting it is like you can there is a problem of over fitting; that

means, after some time is you increase the number of hidden layers it fits the training

data very well, but sacrifices generalization error ok. So, you so, the basic problem is

how deep a network how many hidden layers you should take to solve the problem, or

there is no real solution you have to do trial and error there are methods like

regularization to control how many neurons you should have.

So, those are some problems you would face with, but it is very popular especially with

complex stocks like, stock market prediction or climate prediction it is very popular ok.

(Refer Slide Time: 27:33)

So, I these are the reason is that it is a very it has very lot of expressive power. Many

complex functions it can realize there are many extensions like, I said before backwar,

feedback, recurrent network. There is a self-organizing map if there are many other

numerous type of neural network, but this is the most popular that we will use in data

mining.

And many commercial software actually implement it. So, I request you to just write a

small program to train this backward propagation for a small network on some task and

do it I hope that it will help you.

(Refer Slide Time: 18:12)

So, this closes my discussion on the neural network only the multi-layer perceptron and

the perceptron I am not time to go to other you can read it from the notes and other

sources I will give you, but it is a very popular tool.

