
Data Mining
Prof. Pabitra Mitra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 05
Apriori Algorithm

Welcome to association rules part 2. So, as we had discussed what we want to do is to

find out all association rules of the form X arrow Y where X is an item set and Y is an

item set such that the support and confidence criteria are satisfied support and confidence

criteria are satisfied.

(Refer Slide Time: 00:50)

So, we have defined support to be the number of transactions where the union X and Y

appear and confidence to be the fraction of transactions. So, where Y appear as well Y as

well as X appear divided by number of transactions.

(Refer Slide Time: 01:13)

Where only X appear both the standard ratios are greater than some preset threshold

minsup and minconf we call it to be a association rule and we find out that if we try to

discover such rules finding all possible combination is computationally prohibitive.

(Refer Slide Time: 01:31)

So, then we adopt a 2 step approach the first approach is find out all item sets all sets of

item whose support is greater than minsup and for each of these item sets we divide them

into 2 parts 2 sets of item one in the left one in the right and then for each of these

partitions we see we check the confidence if it is greater than the confidence threshold

we select it. So, there are 2 sets; 2 steps, first is finding frequent items set second is doing

the rule generation from the identified frequent item sets.

(Refer Slide Time: 02:28)

So, but still this finding frequent item set is computationally expensive because let us see

why it is computationally expensive. So, suppose I have 5 items in a store; for example,

let me denote them as A, B, C, D and E; beer, coke, diaper, bread, milk, E E A B A to E;

5 items.

So, I can form a item set of sides 5; 5 item set, you remember the definition of k items

set 5 items set sizes 5 all A B C D; one such 5 item sets are there, there are 4 possible 4

item sets containing 4 elements A B C, D A B, C A B, D and so on, there are 10 possible

3 item sets A B C, A B D and so on. So, basically what we are doing is that see a person

suppose there are 5 items available for sale in the store a customer can buy any of these

combinations a customer can buy all 5 items a customer can buy 4 out of these 5 items a

customer can buy 3 out of this 4-5 items, 2 out of this 5 and so on. So, these; all these

ellipses white ellipses shows that and then finally, a null a customer might not buy

anything. So, this lattice sort of tells us that all the possible item sets that might be

present in a market basket.

We call them as candidate item sets in any choice of purchases. So, if there are d possible

items you can easily check that there are 2 to the power d possible item sets possible

exponential to depart d possible items sets possible. So, either one item set is present or

absent in a in a bag. So, 5 are there; d are there. So, to the power d not only that you see

that these item sets you can sort of arrange them in a lattice like structure. So, in the top

of the lattice is no item set bottom of the lattice is a 5 item set or k items set and then at

each level of the lattice there are k; k minus 1 k minus 2 and so on.

So, 4 item sets 3 item sets 2 item sets one item sets and. So, on and then I can also draw a

line connecting this individual level saying that if one is a subset of the other for

example, the set A B C D; 4 items set A B C D can produce 4 different subsets of size 3 A

B C, A B D, A B E, A C D, B C D. So, if I look at this there are sorry there are this this

will produce this all right just a minute. So, there are this A B C D, it will produce a B C

as a sub. So, I draw this line if say this if this is a subset of this then I draw a line. So, for

example, a B C is a subset of A B C D, A B D is a subset of A B C D and so on. So, if I

arrange this 2 to the power d subsets I can sort of draw this kind of a lattice saying that

which is a subset of which is a subset of it.

If you carefully see this diagram you will see that these lines are nothing, but one is a

subset of and this can go across all levels for example, this A B C is subset are A B, A C

and B C, A B is a subset of A B subsets are A and B and so on. So, the thing to be noted

is that this lattice represents all possible candidate item sets that one may think of now

tell me; how do I find. So, my first job is to find out what are the frequent item sets M.

(Refer Slide Time: 07:50)

So, how I do that 5 set a support threshold you know frequent means number of times is

more than the support I said a suppose threshold maybe I said a suppose threshold that it

is 10 percent of the total number of transactions. So, if the total number of transaction is

one hundred a particular item set should appear more than 10 times more than 10 times;

it should appear. So, what I will do to find out what are the; if that is.

So, then I call it as a frequent item set. So, how do I do it? So, I will take any of this for

example, I will take A B C D, I will go through this hundred transactions and see whether

each of them contains A B C D or does not contain A B C D, I will scan this entire

hundred transaction find out if it contains A B C D or does not and then I will count how

many of this hundred are containing A B C D, if that number is greater than this 10

percent of the total then I will say this A B C D is a frequent size of set I will say A B C

D is a frequent item set, right. So, to among these all possibilities of different item sets if

by brute force I want to find out who among them are frequent each and every one of

these for each and every one of these I will scan; the scan the set of transactions hundred

transaction.

In fact, there will be millions 100 transactions I will check how many times they appear I

will check if the cross the threshold and I will find out who among them not all some of

them among these candidates all these are candidates are indeed frequent are indeed

frequent; that means, they appear more than means of number of times. So, what is the

complexity of this if the total number of transaction item sets possible are m which in

this case is 2 to the power D and total number of elements in the transaction in the

database that is number of n number of transactions is n and the average length of each w

because we have to match the string is w then it is n into m into w which since m is large

number 2 to the power D n is also large.

So, this indeed will be very high ok.

(Refer Slide Time: 11:03)

So, now the thing is that so, but how can we reduce this time let me give you an intuition

the intuition is that do I really need to check each and every pose and every of this each

and every of this item; possible candidate item sets to check if they are support if they

are satisfying the support condition or if I know somehow that one of these is not

frequent one of sorry; one of this is not frequent can that help me to figure out whether

these subsets of that will be frequent or not frequent. So, in other words if I know these

to be a frequent item set they appear a large number of time can I say anything about this

thing let me tell this in plain English; the English is if I know that people buy people do

not buy say milk.

And bread a lot of time will do not buy milk and bread a lot of time; that means, the set

milk and bread is not frequent can I say what can I say about will people buy milk and

bread and sugar frequently. So, if I already know that people do not buy milk and sugar

frequently or let me give another example if I already know people do not buy cricket bat

and cricket ball frequently I can automatically infer that people definitely do not buy

cricket bat cricket ball and cricket gloves frequent do not frequently. So, in other words if

cricket bat and ball is not a frequent item set cricket bat and ball and gloves is definitely

not a frequent item set is definitely not; that means, I will explain soon why it is. So, and;

that means, if A B C; I know not to be a frequent item set I know A B C D is definitely

not a frequent item set.

(Refer Slide Time: 13:48)

So, let me let me state this more clearly I can use this. So, this this principle is known as

the Apriori principle what this principle says is that is actually another way of putting

what I said if some item set is frequent then its subset should also be frequent and a way

of setting this as if people buy milk and bread a lot of time definitely it is obvious that

people also buy milk a lot of time only milk a lot of time. So, it says that if X is a subset

of Y the support of X is definitely going to be more than the support of Y it is definitely

more going to be more than the support of Y. In other words, the support of an item set

never exists the support of this subset let me again explain this with an example suppose

I consider this set or let me take this set sorry.

(Refer Slide Time: 15:17)

Let me consider this set, suppose I consider the item set bread and milk and diaper, bread

and milk and diaper; how many times it appears it appears 3 times, no 3 time, 2 times

bread and milk and diaper appears 2 times row, one time here and one time here, the set

bread and milk and diaper now. So, 2 times it appears. So, the support is 2, now you take

a subset of these 3 say only bread and milk, only bread and milk; one subset. So, how

many times it appear? Definitely, it should appear either 2 times or more than 2 times. In

this case, it appears 3 times bread and milk only. So, take another subset take the set

bread and diaper bread and diaper. So, how many times it appear it appears 3 times. So,

this actually is in agreement with this property that this property that if X is a subset of Y

a smaller set it.

Support should be greater than the support the super sets; that means, smaller item sets

subset item sets have more support than their super sets. So, this is actually known as the

anti monotone property anti monotone property of the support function. So, you can

directly obtain the Apriori principle from this anti monotone property, it is an obvious

extension that it naturally means that if we apply some threshold if an item set is frequent

its subsets must also be frequent.

(Refer Slide Time: 17:58)

So, this property actually helps us avoid evaluating the frequency of all these possible

candidate item sets why because I have already said that if a if a item set is frequent only

subsets would be frequent other way around if something; some items it is not frequent

none of its super sets can be frequent.

So, basically if A B is frequent not frequent sorry if A B is not frequent, A B C cannot be

frequent, A B D cannot be frequent, A B E cannot be frequent, if A B C is not frequent, A

B C D cannot be frequent A B C cannot be frequent, if A B C D is not frequent, A B C D

E cannot be frequent; that means, knowing that this particular set of items A B is not

frequent can immediately infer that none of this can be frequent none of this can be

frequent. So, how this helps this helps in candidate item set pruning earlier everybody

was a candidate for being a frequent item set now moment I examine one I can remove

this from my candidate set I can I need to examine all of this again I will examine some

of them if they are found to be infrequent they are entire parent set will be pruned ok.

(Refer Slide Time: 19:51)

So, that is the principle enter. So, here I illustrate it with an example suppose there are

this six items bread coke milk beer diapers and these are their counts and since there are

six items all possible combination is 41. If I set some support threshold to be greater than

2 that is 3 and above, then only 13 of this 41 are frequent instead of evaluating all these

41; what I can do is that I can remove this coke; an egg from further configurations take

only bread milk and diaper find out 2 item sets combining bread, milk, beer, diaper, only

find their count find 2 of them are infrequent take only this other and get one sub size 3

and so on.

(Refer Slide Time: 21:09)

So, this way I can proceed. So, this forms the basis of the frequent item set finding

algorithm known as the Apriori algorithm; how does the algorithm proceed you first

generate frequent item sets of length one of length one; one item sets find out how many

of them are frequent. So, if we look at this picture if I look at this picture what I do first I

individually find out A B C D E which of these are frequent as a single item and mark

only those which are frequent prune out the remaining lattice among the ones that stay

frequent I find out all their combinations in the next level 2 items at level. So, I check

which of them are frequent by counting and then if somebody is not frequent they are

further sub it I edit, I prune and then I go on till I exhaust go till the bottom and then I

will find out.

So, the steps are this generate item sets of length n length one and then recursively from

frequent item sets of length k from item sets of length k plus one why how you can see

that if I know which are 2 item sets are which are frequent from that I find 3 item sets

which are frequent k; k plus 1, of course, to find out whether their frequent or not you

have to scan the entire database of transactions count and do it.

(Refer Slide Time: 23:44)

So, of course, these are the factors which will still effect your complexity how many

what is the support threshold; basically how much pruning you can do number of items

in each transaction size of the database n transaction width. So, all this will effect, but

still what will happen is that you no longer evaluate all these 2 to the power d item sets,

many of them will be pruned in this process many of them will be pruned in this process.

So, let me quickly give an example of how these proceeds.

So, you can actually visualize it with this example. So, if we consider six item sets. So,

all so many different combinations are possible and suppose I set my I for the first item

set I count what is the support apply the threshold find out frequent one item set frequent

one item set from the one item sets I note that I this in the 2 item sets this ruled out black

ones which are infrequent coke and they do not appear only the remaining.

Ones I combine; I combine to get these 2 or 2 item sets note that I have to again count

for this too it is not that from this count I can from this count I can find out this count I

have taken count here go to the database and count and find out which are frequent and

again I from that I find that 3 item sets. So, this way I proceed this will go on till either

you find the entire number of item sets or no new adaptive lattice is pruned no new can

be all right.

So, this definitely reduces the complexity and this is applied in can be applied in last

databases, in the next class, we will see after finding out the frequent item sets, how I

will form rules from them using a similar Apriori, I like framework and we will see from

the rules how we can evaluate them and do them there are many other algorithms which

further reduce the complexity like FPT frequent pattern tree we will discuss them in the

subsequent lectures.

Thank you for today.

