
Database Management System
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 10
Intermediate SQL/2

(Refer Slide Time: 07:37)

Welcome to module ten of database management systems. We have been discussing

about intermediate level features in SQL; and this is a second and closing module on

that. So, we have in the last module talked about join expressions, views and transaction

in a bit.

(Refer Slide Time: 07:46)

In this module, we will try to learn SQL expressions that are responsible for maintaining

in the integrity of the database. We have talked about integrity a little. We will now see

how explicitly integrity can be checked and how different kinds of integrity can be

ensured through SQL. We will also talk about more data types.

We have seen the basic primitive data types, and we had promised that we will talk more

about the data types including user defined data types here. And finally, we will talk

about a very important aspect of authorisation as to who can do what in a database in

through SQL.

(Refer Slide Time: 08:27)

So, this is a module out line.

 (Refer Slide Time: 08:30)

We start with integrity constraints.

(Refer Slide Time: 08:31)

Integrity constraints guard against accidental damage to the database that is there are

certain real world facts that must be ensured in the database all the time. For example, in

bank accounts, we have a minimum balance that need to be maintained; for a particular

customer, we might want that the customer’s phone number must be present. We may

have certain age bar in terms of entering into certain memberships or certain employment

and so on. All these kinds of real world constraints need to be represented and

maintained in the database and that is the purpose of the integrity constraint.

(Refer Slide Time: 09:16)

And we will first look at the issues of integrity constraint for a single relation, and we

have seen the use of not null and primary key. We will also talk about what is unique and

we will see how actually general constraints can be checked in terms of a check clause

with a predicate P.

(Refer Slide Time: 09:43)

So, not null we had seen this before we can while creating the database table. Create

table we can specify a field to be not null and then in that case null values will not be

allowed in those fields. So, they will must be some value given. You can say one or more

attributes to be unique. If you specify them to be unique; that means, that in any instance

of the table in future that cannot be two tuples which match in all of those attribute.

So, if you say A 1 to A m are unique; that means, that if we have two different tuples in

the table anytime in future. Two different rows in the table t 1 and t 2 then across A 1, A

2, A m they must differ in at least one attribute value. So, uniqueness is a basic

requirement for being a candidate key, but they are, but still permitted to be null which in

contrast to what is the true for primary key already you know that primary key values

cannot be null, but uniqueness allows a null values, but they have to be different.

(Refer Slide Time: 10:58)

The check clause is where you say check and then you put a predicate. So, the idea is

like this suppose I know that I have specified and attribute called semester. It is a varchar

6 which means that it can have a string maximum of length 6, but naturally I can write

anything there I can write morning in that field. I can write welcome in that field and so

on, but those are not valid names of semester. So, I want that in my design semester must

have any of these values only.

So, we say semester in. So, I have listed the values that are allowed in is a set

membership. So, it says the semester in so which means the value of the semester is be

one of this fall. And this whole thing now becomes the predicate P which on which I give

a check which means that whenever I am creating once you have created the table when I

want to insert or update the values in the table, the records in the table then e the value of

semester has to be always within this. Otherwise, the check integrity constraint will fail,

and the update or insert will not happen and an exception will be raised. This is the basic

idea of check constraints.

(Refer Slide Time: 12:25)

Now, let us move on to more involved integrity check which goes beyond one table. So,

let us suppose that we are talking about the instructor table we have the instructor table.

An instructor table has a department name. Similarly, we have a department table which

naturally has a department name. Now, we know that this is the key in the department

table and therefore, here it is the foreign key.

Now, while we are inserting records in the instructor table how do we guarantee that the

record that we insert has a corresponding entry in the foreign key table that is difference

table. So, it is when we are inserting and in a faculty in the saying that the faculty

belongs to biology department there needs to be a biology entry in the department table

as well. So, this is known as a referential integrity that is once you refer from one table to

the other that reference must also be a valid one; otherwise, all your computations will

go wrong.

(Refer Slide Time: 13:48)

So, this is a for saying it formally there are two relations and one relation as a primary

key which is used in the other relation as a foreign key then there is a referential integrity

that needs to be maintained.

(Refer Slide Time: 14:02)

So, here we are just showing the effect of that. So, we have created a table this is the first

one is what you have seen earlier creating the table course and that table course needs the

name of the department. So, we are specifying that it references the department table.

Now, if it references the department table it must ensure the referential integrity. So, this

just says that this refers to the department table, but I can be more specific to say what

will happen if the integrity gets violated. For example, I have created this and the course

table has an entry, which has a department name say biology. Naturally, biology

department should have the entry there should be an entry in the department table with

this department name biology for this to be valid.

Now, say for some reason the biology department is abolished and that particular record

from the department table is removed, naturally, the course which is referring to biology

in terms of its department name that particular record will become invalid. So, we can

say that on delete, what you should be doing, one most common action that we specify in

referential integrity is cascade that if the referred entity is deleted then the referring

entity should also be deleted. So, if you delete the biology entry from the department

table, then all courses which have biology through references to department as their field

value should also get deleted.

Similar thing can be there on update also. For example, biology department say

tomorrow changes the name to bioscience. Now, if I have a referential integrity put on

the course table as on update cascade, then as I change the bioscience the name to

bioscience. All records in the table course, which had the department name as biology

will necessarily get updated. So, this is the way to maintain referential integrity.

Cascading is one of the most common way to handle this, but there could be other ways

to take action also that could be no action that you say ok, I do not care. Let that happen

in that case some, because of the violation that could be some exceptions thrown or even

say that if this happens then I will set that field to null or I will set that field to some

default value and so on.

(Refer Slide Time: 17:01)

So, this is how the referential integrity has to be handled. There could be integrity

violation during transactions also. This is an example of a self-referential table which of

persons which where every person’s entry needs the name of the mother and the father

which are also entries in this table. So, necessarily if you are entering a person record

you need this feels to be populated and that can be populated only if those records

already exists.

So, there is some order in which you have to enter the records or you have to set them as

null and then update them in future and or some ways to say that well do not check this

integrity now. We will talk about this integrity at a later point of time. So, these are the

issues that necessarily you will have to be addressed.

(Refer Slide Time: 17:54)

Let us move on and look at the SQL data types and schemas.

(Refer Slide Time: 18:02)

So, in addition to the data types like char, varchar, int and all that you have an explicit

date data type which gives you a year, month, date kind of format with a four digit year,

because date is very frequently required. You have a time type to give you hour, minute,

second time format. You have a timestamp, which is date and time together and you have

what is known as interval where you can do a date or time difference between two

different dates, two different time, two different time stamps and so on. So, these are the

common added built in types which makes it very easy to handle the temporal aspects in

SQL queries.

(Refer Slide Time: 18:54)

In addition, the next that you can do is you can create an index. So, let us look at this. So,

this create table definition you understand well by now. You can I can do this, I can say

create index and give a name for the index and specify which field on which the index

should be created. So, here we are saying that the index should happen here. This is the

name of the relation, this is the name of the attribute name of the field. Now, this does

not change any data neither does it change any schema, but it creates certain additional

structure. So, that it becomes easier to search this particular table using IDs.

So, if I have a query like this that I am trying to find out all information about a

particular student then as we have said that by default the different entries the rows of a

relation are unordered. So, the only way to find out this particular row and in fact,

whether it actually exist would be to go over all the relations one by one. But if we index

it, then it creates some kind of an efficient data structure through which it can be

searched out very efficiently very easily with a later module we will talk about index in.

But just to give you the idea that this is similar to finding out a value in an unordered

array if you are thinking of C.

In contrast, I can we all know that this can be done, but takes a whole lot of time it takes

order in time. But I could keep those numbers in terms of a some binary search tree,

balanced binary search tree like red black tree or two three four tree kind of, where the

search can be conducted in a login time. Or I could keep it in terms of some efficient

hashing mechanism where the search could happen in terms of an ordered one time also.

So, index is has a has a lot of importance and we will talk about that more, but this is

how you create index in SQL.

(Refer Slide Time: 21:18)

You can have user defined types, you can say create type and use some specific you

know sub types of a type as and give it a name. So, you send numeric 12, 2. So, which is

the 12 digit number with two decimal places of precision you can call it dollar and then

use that as a type name. So, type name doing this helps in to visit make sure that

wherever you actually have to conceptually refer to dollars you are talking about dollars

it is easier to understand and you are making sure that everywhere the same numeric

precision is used.

(Refer Slide Time: 22:02)

 You can also actually go further and create domains which is very similar to create type.

But domains are more powerful in the sense that in a domain. You can also add

constraints like not null and you say that this is person name see say that this once you

have set that this person name is 20 characters long and it cannot be null then you do not

specifically have to every time.

You define a field based on this domain type you do not have to specifically say that it is

not null. You could also create a specific constraint in terms of the check clause and

make it easier. So, now if you say degree level you do not have to put check clause

explicitly in the SQL query, because it is already specified in the created domain.

(Refer Slide Time: 22:52)

SQL supports certain large-objects which are either called blobs if they are binary, or

called clob if they are character objects. The only the major difference in terms of the

large object types are they are not stored as a part of the table. They stored elsewhere and

you actually maintain a kind of a reference a pointer to that large object. So, this is very

useful in terms of handling photos, videos and no big binary files, character files also.

(Refer Slide Time: 23:21)

Let us move to authorization.

 (Refer Slide Time: 23:29)

Next, authorization is the process by which you restrict different users to be able to do

different kind of operations. You recall in the early modules on database overview. We

mentioned that there could be several types of users for a database. There could be

absolutely application users who may necessarily do not feature as a part of the database

development. But there could be application developers expectedly most of you would

become application developers or there could be intermediate higher level of analyst who

design databases, design constraints, decide on indices and so on and that could be

database administrator.

And also in terms of different application programs and programmers there is a need to

separate out who can access which part of the database. For example, if you look at a add

a banking system, then while I am by net banking application is accessing different

information about my account, one part I need to ensure that I can only access my

account.

And also what the database system needs to ensure is that a net banking application

should in no way be able to access the information about the specific employees,

because, in the same database information about the bank employees will also be there. It

should not be possible for possible to access information about different physical

information about the branches as to where, how many square feet of area that branch

has and so on and so forth.

So, we need to put variety of restrictions and as we will see that authorisation or this

process of restricting or allowing different access and different authority to operate is

decided based on two different factors. One is what you want to do, and two is who

wants to do that. So, what and who, so we identify different operations or different

operations on certain tables or operations on certain attributes as what needs to be done.

And on the other side, we will identify who in terms of specific individual user IDs or

groups of user IDs or roles that exist.

So, here we will just try to show you how we can do that in SQL. So, the first part of the

authorisation is being able to do different things with the database that means, the

instances of the database. So, there are authorisations to read insert, update and delete.

So, read is where you can access the data, but you cannot modify; insert is when you can

add new data, but you do not with insert rights authorisation, you cannot update an

existing data, you can only insert data. You can have update rights, where we can change

make modifications, but you may not be you are not allowed to delete data, and you can

that would be delete right where it allows you to delete data and my new this

authorisations or not these are all independent authorisation.

So, you may have I mean certain authorisations may need certain other authorisations to

be present. For example, if you are updating naturally evenly to read, but it is these are

all independent authorisations, and you may have one or more of them to be able to do

the appropriate actions. Similar set of another set of authorisations will exist, if you want

to for those want to modify the database schema, naturally, this is primarily for the

applications and application programmers, and this primarily would be for the analysts

that you can index the different table you can do.

You can have authorisation for resources which mean you can create new relations,

create new schemas, you can alter schemas, you can drop schemas and so on. So, these

are the different kinds of authorisation that are possible.

(Refer Slide Time: 28:01)

So, let us see how it works the authorisation is specified in terms of a statement called

grant. So, you grant an authorisation to a privilege list and on certain relation to a group

of users. So, grant what kind of authorisation you are granting that is the privilege less

list on what relation on view you are granting that is on condition and to whom are you

granting those. So, user list could be a specific user ID or you could say public which in

this case everybody will have that or this could be a role which will see, what a role is.

Granting a privilege on a view does not imply granting any privileges on the underline

relation, please mind this one, because, you have seen that a view can be formed from

multiple different relations. So, if somebody has been granted a particular privilege say

read privilege on a view, then it does not mean that the corresponding underline

relationship, you been granted a read privilege on faculty relation that we faculty view

that we did that does not mean that the user will automatically get a read privilege on the

underline in structure relation. So, that has to be kept in mind.

The grantor of the privilege must already hold the privilege that is you cannot grant,

naturally, grant will be done also by somebody in some of the users you may be, so that

user who is granting must also have the privilege same privilege on the specific item. So,

you cannot grant privilege on something, some relation or view on which you yourself

do not have that or it has to be the database administrative who naturally has privilege

for everything.

(Refer Slide Time: 30:13)

The privileges on SQL there is a select privilege, which is so you know this is the

privilege list. Select privilege which basically means read access. So, it is saying select

privileges is read access on instructor and these are the different users. So, this is how

typically, you can have insert to ability to insert tuples, the update privilege this should

be easy to understand now delete privilege.

So, only thing is read is a called select here, so these are the different privileges that you

have in a SQL. And you have one all in compressing privilege which is called all

privileges so as a short form of allowing all these allowable privileges.

(Refer Slide Time: 31:00)

Certainly, if you can grant an authorization, then needs to be a reverse process that is if

we want to withdraw authorization of certain privileges on certain items for certain users,

so that is known as a revoke statement. So, we can revoke it the structure looks exactly

similar to the grant. So, you revoke a privilege list, select, insert this kind of on certain

relation and view from a set of users. So, you can say that revoke select on branch from

this. So, once this is done, then U 1, U 2 and U 3 will not be able to read the branch

relation or the branch view. The privilege list may be all to revoke all privileges. So,

instead of revoking select insert, separately, you can just say all and revoke all of that.

The list of revoking can include public which means all users lose that privilege and or

though those were granted. If the same privileges granted twice, now it is possible that a

user gets privilege granted to him or her by two different granting authorities, then the if

ones is one of them is revoked the other will still continue to remain; So, every privilege

that is granted needs to be explicitly revoked that is a basic meaning.

So, all privileges that depend on the privilege being revoked are also revoked. So, some

privilege which is dependent on some other privilege, if you revoke the update privilege

then this select privilege will remain. But, if you revoke the select privilege then if you

also had the update privilege that will certainly get revoked, because if you cannot read

then naturally you cannot change.

(Refer Slide Time: 33:01)

 The SQL also allows you to create certain roles. Roles are kind of like virtual use that

so, we all say that we all play certain role. So, I have an entity as an individual say I may

be user called P P B, but I have a role as an instructor, I have a role as a say the head of

the department, I have a role as a chairman of committee and so on. So, often times it

becomes easier to grant privileges to different roles.

You do not really care immediately about who that individual could be who that

particular user could be who has that privilege, whoever plays that role gets that

privilege, whoever becomes the director of IIT Kharagpur has the privilege to appoint

faculty members it is of that kind. It does not specifically. So, role is of that kind of a

concept. So, you create role we are saying that role is the role instructor is created.

And then you are saying that you grant instructor to Amit which says that Amit now

plays the role of instructor. So, any privilege that the instructor role has Amit will enjoy

that. So, let us see more of this the privileges can be grant to roles. So, earlier we said it

could be public, it could be users, but now you are saying that it could be two roles. So,

here this role was creates and the privilege is being granted to that. And since Amit plays

that role it will mean that Amit with this grant select on takes to instructor, Amit will

actually get a privilege of select on takes relation that is the kind of derived structure that

roles give you roles can be granted to users as well as to other roles.

So, roles are becoming like virtual users. So, you can create role teaching assistant and

grant teaching assistant to instructor, which means that if you do that you are granting

this. So, it means that any privilege the teaching assistant will have the instructor will get

those privileges, because, you have made in instructor to also play the role teaching

assistant mind you instructor itself is virtual entity. So, if Amit is an instructor by this,

then Amit plays this role and this role plays teaching assistant role and this teaching

assistant role has certain privileges, so naturally through this chain process Amit will get

those privileges. So, in an instructor inherits all privileges of teaching assistant.

So, this is what exactly, what I was talking of you can have a chain of roles create a role

dean new one, you have created, then grant instructor to dean grant dean to Satoshi. So,

which means; that once you grant dean to instructor; so anybody who plays the dean’s

role will get all privileges of instructor. Here you are saying that Satoshi is going to play

the dean role. So, the Satoshi in terms of chaining gets all the privileges that instructor

has.

(Refer Slide Time: 36:41)

So, once this has been done, then you can have authorization on views as well. So, you

have created a view here. So, this is the view created the geo instructor the Geology

instructor. And on that view particularly you have given the privilege to the geo staff. So,

a geo staff member would be able to access this view. And if this query is fired by a geo

staff member, which I am assuming is a role then this view will get executed and the

results of all instructors in the department geology will be update. But, what if the geo

staff does not have permission on instructor, does not matter that is the beauty of the

whole thing. The geo staff may not have permission to do select on instructor, but the geo

staff has permission to select on geo instructor. So, the geo staff will be able to execute

this view, but the geo staff will not be able to do a select on from the instructor database

instructor table.

(Refer Slide Time: 38:16)

There are several other authorization features, the references a privilege to create foreign

key. So, we talked about basic read, write, data manipulation privileges, but there could

be other privileges like whether you can create a foreign key, whether you can transfer of

privilege. So, whether you can give one privilege to another, so whether you can cascade,

whether you can restrict and so on.

So, transfer of privileges is also privilege. I am naturally will have to think of this is an

authorization. So, actually what we can authorize is also a privilege that needs to be

authorized. So, these are the derived privileges that I have.

(Refer Slide Time: 39:00)

So, in summary, we have learnt about SQL expressions to deal with integrity constraints.

We are familiarized with more data types particularly user defined types and domains

creation of index and we have discussed about authorization in SQL. Each one of them

particularly authorization has lot more details, but at this intermediate level we just

wanted to get a basic idea about authorization to be able to deal with that.

So, with this we close our discussion on the intermediate level SQL features. In the next

module that we start next week, we will talk about some of the advanced SQL features.

