
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 02
Introduction to DBMS/1

(Refer Slide Time: 00:42)

Welcome to module two of database management systems. In this module, we will talk

primarily about the introduction to the DBMS. This discussion will span two modules

that is the current one module 2 and the next one that is module 3. Just to quickly recap

in the last module we have discussed about why we need databases, and we have

introduced you to different aspects of the course.

(Refer Slide Time: 00:54)

In view of this, in this module, we would familiarize you with basic notions and

terminology of a database management system just at an introductory level. We will try

to understand the role of data models and specific languages for database systems. And

we would also outline the approach to database design.

(Refer Slide Time: 01:21)

So, the module outline would be like this. And as we go along you will be able to follow

which particular aspect of this outline we are discussing about.

(Refer Slide Time: 01:35)

So, to start with we talk about levels of abstraction.

(Refer Slide Time: 01:40)

A database system like any other system is conceptualized in terms of three levels of

abstraction. At the lower most level is the, what we say is a physical data level or the

physical level which describes how a record is actually stored, so that is about the

physical storage in the system. At the next level, we talk about it we say it is a logical

level which describes the data stored in databases and its relationship amongst the data.

So, you can any data that is stored you can think about it as a record. So, if we here we

are illustrating the record of an instructor who teaches a course. So, as you know the

record is a collection of multiple fields of different types. So, here we have field to

describe the ID identifying number or shrink of an instructor, we have the name of the

instructor, the name of the department, the salary and so on.

So, this logically says this is the entity this is a record or this is the structure of a record

that I want at a logical way. So, this in contrast to the physical level, logical level is not

concerned particularly with how that these data, how this string the number and all that

will be actually stored, and how these multiples of hundreds and thousands of records

will actually be stored so that they can be efficiently used. But we are just concerned

with the logical view that I should be able to deal with records as they are.

At the third level which is it can say the topmost level is called the view level where the

application program tries to view the data. And when the application program tries to

view the data, it deals with the details that it needs to; and rest of the details are usually

hidden from this view. For example, if here we talked about the university database in

the last module, so if you are talking about the university database, and then you are a

student. And you are when you access the database you should be able to see what all

courses you are enrolled in or where is that course being held who is the instructor of that

course and so on. But you should not be able to access or see the view of what is the

instructors salary or for that matter, what are the grades that are obtained to by different

students in different courses and so on.

Whereas, an instructor may be able to view the performance of the students in multiple

different courses particularly the ones that he or she is involved in evaluation, but she

again may not be allowed to check the salary of other instructors. So, view level is a high

level where of abstraction where you try to provide the information about the data in

terms of what the application needs, what the users of that application need, but you do

not actually deal with the details of all the records that the logical level has.

(Refer Slide Time: 05:29)

So, these are three levels form the basic structure of a database system architecture of a

database system. As you can see the physical level using that a logical level of records

are formed. Physical level typically is in terms of database files is binary in nature, the

organization of those files. The logical level deals with the records and the different

fields of the records the schema of the database and so on.

And the view level is something which is constructed from the logical level in terms of

different views that the different applications need. I am sure at this stage you may not

understand the whole of these levels and their implications, but this is just to give you an

idea of the existence of three levels, and the need to deal with the three levels. And as we

go along, we will see that we will refer to these levels more and more and discuss about

the specific aspects of those.

(Refer Slide Time: 06:27)

Next, let us talk about schema and instance.

(Refer Slide Time: 06:34)

We will very regularly keep on referring about schemas and instance. The schema is in a

very simple terms say if we talk about first a logical schema, it is a way a certain data

needs to be organized, it is a plan for organizing data. So, if you can draw a parallel then

say when a building is constructed, a plan is prepared. And according to that plan several

buildings a in a say residential complex may be constructed. So, there is a difference

between the plan which gives you the layout of where different rooms should be where

there is a staircase where is the courtier and so on and the actual building when or the

group of buildings which are constructed. So, the schema primarily talks about what is

the plan to organize the data.

So, if we talk about a customer schema, it has multiple different fields, it should talk

about the name of the customer, ID of the customer, it is account possibly the other ID

the mobile number and so on. So, the fact that these the fields need to be present for

describing a customer, forms a customer schema. Whereas, when we talk about a specific

schema of account that the customer holds with a bank, then we need the account

number, account type, interest rate, minimum balance, the current balance and so on.

These are the fields of information that we need; and we need to know what is the type

of every such field, and all those and those kind of information from the schema

information.

And again in line with the abstractions of physical logical and view as we did, schema

also can be at a logical schema which is corresponding to the logical level of abstraction.

And we may also have a physical schema which tells actually how the data is physically

organized in the database, what are the different database files, how they are indexed and

so on.

So, all these information which we can say is kind of a metadata information. This is not

actually that it is not the customer schema is not saying who the customers are, the

account schema is not saying, what are the accounts, what is their balance. But it is

saying that if a customer needs to be defined; then what is the information that you need

to know, what is the information that you need to manage. If an account need to be

described then what is the different fields that are important. So, this schematic or this

metadata is called the schema of a database.

(Refer Slide Time: 09:25)

Now, based on this schema specific instances of databases happen, instances when you

actually have populated different records according to the schema. Now, naturally once

the schema is fixed, your records will need to have values in all of those fields that the

schema has; and every value must be of the type that the particular field is specified with.

So, I have just shown here certain sample instance of customer schema, where you can

see three customers with their name, customer ID, account number, other ID, and mobile

number, these are all fictitious data of course, but this is just to give you an idea of how

this customer instance would look like.

Similarly, we have shown what is a accounts instance, so you can see that there is a some

kind of a relationship that you can see between these instances. For example, the first

customer ID on the customer instance can be seen as a first I am sorry the first account

ID in the customer instance can be seen as a first entry first record in the account

instance and so on. So, when we actually populate the schema with different records and

this is what keeps on changing.

So, certainly when we do operations on the database, then certainly very regularly new

records will get added, some records might get deleted from this instance, and fields of

certain records may keep on changing. For example, in an accounts instance very

regularly whenever a transaction is done, the account balance will get changed; maybe at

a certain time the bank might decide to change the interest rate for a certain type of

account then the interest rate field will get changed, new customers may come into the

customer instance and so on. So, instances keep on regularly being updated manipulated

added deleted updated, but the schema remains unchanged.

So, change of the schema is very rare in a database and needs to be done only when the

database is designed or when it is being upgraded. Because once you change the schema,

it changes the way you look at the whole world, you look at the whole database scenario.

So, if you are changing the schema at a logical level, then naturally the your view will

also get affected, because you are using these schemas to decide how you would like to

present a transaction application to the user or for a balance check application to the user

and so on.

(Refer Slide Time: 12:22)

But, of course, what do we would want is between the physical schema and the logical

schema we normally would want certain independence. What it means is the logical

schema is what you need to deal with, because it is linked with the view that you have at

a higher level of abstraction. On the other end, the logical schema is based on the

physical schema; physical schema is how you are actually organizing the information in

terms of the binary files the database files.

Now, certainly you want that logical schema not to change because if it changes then at a

view level all your applications will have to change. But it is quite possible that your

physical schema the way you have organizing files and so on might need a change,

because maybe it is just that you had designed the database for 10,000 records and you

already have 9000 records and you would like to expand it to maybe 1,00,000 records.

And the physical this system needs to be different you may need to reorganize the files

and so on, you may need to index it in a different way and all this, but you would like to

do that change in the physical level without requiring any change at a logical schema. So,

this property of a database schema is very required which we say is a physical data

independence or the ability to change the physical schema without actually affecting the

logical schema or the view level. So, that will be a critical factor that will have to keep in

mind.

(Refer Slide Time: 14:16)

So, next is data models.

(Refer Slide Time: 14:20)

Data models are a collection of tools that describe the data because we are talking about

a database system. So, certainly the main focus here is to be able to model that it to be

able to represent the data, so that talks about relationships between data, it talks about the

meaning of the data the data semantics, it talks about data constraints. For example, it is

an account balance, we just refer to account balance in the account schema in the

instance, now, the question is will can the account balance be negative, the answer is yes

or no.

If the bank mandates that I can only withdraw as much money up to which I have

deposited, then account balance cannot be negative, but if the bank is giving me the

facility to overdraft then I may be able to draw more money than I have actually

deposited. So, my account balance might note negative. In some banks it could be that

the bank says that well there is a minimum balance. So, minimum balance is 5,000. So,

which means that my account balance cannot go below five thousand rupees the bank

will not allow those transactions. So, these are examples of different constraints that

might exist in the real world, and therefore, will be required in terms of the data model

representation.

So, there are several data models that exist today. The most widely used the most popular

and most powerful in terms of a certain section of database applications which we are

commonly interested in is a relational model and that is what we focus in this course. We

will have a major discourse in terms of the relational model and lot of things will be

developed based on that. But it is not easy to directly design a database in terms of the

relational model, because you first need to understand the real world in which the design

is happening.

So, we normally start with a less formal model known as the entity-relationship data

model or an ER model, ER diagram, these are commonly called. So, if you recall your

knowledge about object oriented systems, and if you happen to know uml, you already

know about ER models and corresponding class diagrams that that result. So, we will

talk briefly about your model and show you how to do modelling on the real world in

terms of the ER diagrams. But, then they are not actually models which the database

systems directly used they are subsequently converted to some relational or other model

and which the database systems will use.

Next is a object-based data models. You all would be knowing familiar with the fact that

objects give a better power to represent the system which objects are not like simple

strings or numbers or characters like that, they are encapsulated concept of an entity

which can be manipulated in a certain way. So, like in the real world, you have several

objects, it would have been nice to have similar objects in the databases. So, quite a few

database system have been designed used which are object-based database systems. So,

there are models for those. However, we will do little of that in this course, because it is

little bit advanced in notion.

The other model, which has become very popular is called the semi-structured data

model. It is primarily in terms of XML. I am sure all of you would be familiar with the

basics of XML, which is extensible mark up language in which you can create use tags

and use different mark ups to describe the data. You can say this is the field and this is

the value kind of. And this is become a very nice way to represent the data. And XML or

the semi-structured models are particularly useful today to exchange data between

different systems.

I may be using a my SQL kind of database system, my friend may be using an oracle

system, and we need to exchange data tables between these two, these two systems will

represent the data in the in physical schema which are not may not be compatible. So, we

can represent both of them in terms of XML models convert the data. So, I convert the

data into XML, give it to my friend and my friend can import from that XML into the

database. So, it is a XML is a data model which is frequently used in terms of data

exchanges.

Then there are several other models like the network model, hierarchical model which

used to be very popular in the early days of database systems before relational model

came into force. They still exist in terms of the some of the databases. And some of the

newer emerging big data databases actually we have started using this old concept in a

new way again. So, this is a overall set of data model.

(Refer Slide Time: 19:58)

So, here I am just showing an example of a relational model data which is simply looks

like a table. So, you can see that on top row in the blue are the names of the different

fields which describe the schema. It says that it has an ID, it has a name, it has a

departments name, it has salary. They are trying to describe a particular instructor, and

then a whole lot of records rows in that table, which are every row individually is a

particular data entry or a record. So, columns are attributes, and rows are records that the

relational model described.

(Refer Slide Time: 20:40)

Some more of that the instructor table along with the department table. So, the table

below describes details of a department, so that has its own schema and the individual

records. We have of course seen similar instances already in terms of the customer and

accounts instance that we have just discussed a couple of while ago.

(Refer Slide Time: 21:03)

Let me introduce these two terms DDL and DML.

(Refer Slide Time: 21:10)

DDL talks about data definition language. So, what the concept wise what we are trying

to say is certainly we have a schema and we have instance. So, we need certain language

constructs to be able to define a schema and certain other language constructs to be able

to manipulate the data in that schema or they are basically manipulate the instances. So,

DDL is the language or part of the language which is used to define and manipulate the

schema of a database that is why schema is a way to define a database. So, it is called a

data definition language.

So, you can define that I will am going to have a table called instructor which will have

four different fields, each having certain types of data. So, it says that the ID will be a

five character data; the name would we would have a variable length, because you

cannot say that the name will be of a fixed length, but it will be a variable length that is

what varchar is, but the length will not exceed 20. And similarly, salary will be a numeric

data with up going up to 8 figures, and having a decimal part having two parts.

So, this way of defining the schema in terms of the different attributes and their types or

columns in the table or trying to define the structure of that table is a main issue of the

data definition language. So, the data definition language compiler who generates a set of

tables in the data dictionary, where the data dictionary basically contains metadata as I

said the schema is nothing but a metadata about the database tables. So, which will have

the database schema, it will have different integrity constraints, it could say that well the

account balance cannot be negative or account balance cannot be less than the minimum

balance. So, these are different integrity constraints. It could say that this is the primary

key, we will talk more in more depth in terms of what is key. And it could also specify

the authorization as to who is allowed to access which part of the data and so on, so that

is these all are part of the schema definition and forms the DDL of the language.

(Refer Slide Time: 23:36)

In contrast, the data manipulation language is a language for accessing and manipulating

the data organized. So, it is for access, update, addition of new records, deletion of

existing records and so on. And very commonly we will refer to the data manipulation

language as a query language, because this is what you want to know what exists in the

database. So, the query language will be designed, they are designed primarily in one of

the two ways. One group of languages is known as a pure language, they are more

mathematical in nature. They have a formal basis that can you can prove that whatever

do you do in these languages are correct, and will give you the correct result.

So, they are different languages based on the relational model, they are called relational

algebra, tuple relational calculus, domain relational calculus and so on. Of these three,

we will in this course deal only with relational algebra. There are mathematical proof

which show that whatever you can do in relational algebra you can do it in tuple

relational calculus and vice versa. Similarly, whatever you can do in relational algebra,

you can do in domain relational calculations and so on. In one sense that these languages

are equally powerful; the same thing can be done in any one of them, but we will just

take the simplest of them and study here in terms of the relational algebra, but these are

more mathematical representations are not easy to write as a program. So, normally we

will use certain commercial query language which is called SQL for most of our

applications and we will do the coding in that.

(Refer Slide Time: 25:19)

So, SQL which is a most widely used commercial language and mind you this is not a

Turing equivalent language which means that everything that can be that need to be

computed cannot be computed in SQL, there are certain computations which SQL cannot

do. It is a limitation; it is a restricted language. So, often SQL is used in conjunction with

some common high-level programming language like C or C plus plus and so on. So,

whatever is there can be done in SQL in terms of data manipulation will be done in terms

of the relational model, but there could be additional logic that needs to be built in, in

terms of the high level language. So, application programs are typically written through

them. So, we can do this through a process of embedding that is put in SQL as a part of a

C program or use certain libraries which can actually take a query from C, and fire it on

the SQL database.

(Refer Slide Time: 26:26)

So, we will see how to do this in the course of time.aspect.

(Refer Slide Time: 26:32)

Coming to the database design this is a process through which the databases need to be

designed. And certainly the first part of the design is the logical design where you want

you need to identify what are the schemas and you know what are the constraints that

apply, what is authorization required. And first set of decisions those are related to the

business as we say. Business means it is basically comes from the domain. So, it is if I

am doing a university database, the business decisions will come in terms of you know I

have courses, students, instructors, and the instructor teach courses, can an instructor

teach multiple courses, can a course be taught by multiple instructors these kind of

business decisions are critical for the database design.

And then there is a whole set of computer science decision or the data based decisions to

decide as to if this is the kind of business information that you want to keep in the

database, then what is the kind of relation, what is the kind of schemas that we should

use what are should be the attributes, which attribute should be of what type what should

be strain, what should be numbers and so on. So, these are formed the basis of the

physical logical design. And of course, we then need a physical design which decides on

the physical layout of the data, what are the different database files, how they should be

indexed and so on.

(Refer Slide Time: 27:53)

So, here we are showing an example table. So, it has multiple fields. It shows the

instructors expanded form of the instructor table you saw earlier. It is expanded with the

departments name and the building in which it is housed. So, if you look carefully that

this certainly comes from the business decision that you need to know the department to

which an instructor belongs and certainly you need to know the building in which that

that department exists. So, knowing the department of the instructor and the building of

where that department is are critical, but the question is this a good design, is this so we

will discuss as to when why this is a good, this may not be a good design to represent the

data.

(Refer Slide Time: 28:41)

So, in this module, we have taken you through the basic notions and terminology of

database management systems, highlighting primarily the levels of abstraction, the

schema an instance, the basic data models the languages that you need DDL, DML and

the commercial SQL language. And we have also tried to give you a glimpse of the

approach that is required in terms of the database design. We will elaborate on this more

in the second part of our introduction to DBMS which will be taken up in module 3.

