
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 26
Indexing and Hashing/1: Indexing/1

Welcome to module 26 of Database Management Systems. In this module and the next 4;

that is for the whole of this week we will talk about indexing and hashing.

(Refer Slide Time: 00:33)

So, this is a quick recap of what we did in the last week primarily talking about

application development and then specifically; we focused on storage and file structure

that is how a database file can be stored how it can be organized and in a manner so that,

we have efficient representation for that now.

(Refer Slide Time: 01:01)

We will move on from there to and focus on the basic feature of a database system,

which is the ability to find information in a very fast manner the ability to update in a

very fast manner. And we will see the reasons for which we do something on the

database tables called indexing and we will talk about ordered index in this module and

about the index sequential access mechanism.

(Refer Slide Time: 01:31)

So, introduction of the basic indexing concepts and the order indices and we start with

the basic concepts.

(Refer Slide Time: 01:40)

So, consider a very simple example, let us consider an example where there is a relation

faculty which has name and phone number and additionally. So, just focus on the middle

part the pinkish part of the table which is table faculty besides the two attributes I have

put a serial number for the records which kind of can be considered as internal numbers

of the database to identify each record.

Now, let us say let us assume that we have to search on names suppose we have a query

that get me the phone number of Pabitra Mitra. So, you can see that Pabitra Mitra the

record name occurs at position 6. So, if we have to get the phone number, then naturally

we have to look at all these entries from one end to the other till we come across Pabitra

Mitra match the name Pabitra Mitra and we can access the phone number.

Now, similarly if we have to search for a phone number we will have similar situation.

So, if we want to get the phone numbers of the faculty having phone number 84772.

Again we will have to search on the phone number from one end to the other and find the

name of the faculty. Now, certainly this will mean that if there are n records in the

database then we will need or the order of about n by 2 comparisons to be done or

accesses record accesses to be done before.

We can find the desired record which is certainly not a very efficient way of doing things

and you know from your knowledge of basic algorithms that; if we have a set of data and

we want to find a particular one then we can make it efficient by actually keeping the

data in a sorted manner and doing some kind of a binary search that is one one possible

mechanism through which you can do that.

So, we can use that same context same concept now and just look at the left side the blue

part of the blue part tableware, what I have done have collected all the names of the

faculty and I have sorted them in lexicographically increasing order and with that I have

kept the record number as a pointer. Now, since this is a sorted array. So, here I can

search for Pabitra Mitra for the first query in a binary search. So, at least in the log n

order of comparisons I should be able to find professor Pabitra Mitra and get the fact;

that it is record number is 6 navigate to the record number 6 in the table in the middle

and take out the phone number.

Similarly, without disturbing the actual faculty table I can build a similar kind of

supportive table on the right the yellow one where I collect all the phone numbers and I

have sorted on the phone numbers I can again do binary search on the phone number

84772 and find the phone number find the record number where this phone number

occurs and go and find the name of the faculty.

So, you can see that naturally this gives us a alternate way of finding out and certainly

you would say that we could have kept the record sorted on name or on phone number,

but certainly if we keep it sorted on name the first query we will get benefited the second

query will still take a linear time if we get keep it sorted by phone number the first query

will take a linear time. So, if we cannot actually keep the data sorted on both and

therefore, this is just an alternate mechanism called the indexing mechanism through

which even though the original data is not sorted by maintaining some auxiliary data we

can actually make our search mechanism more efficient and that is the core idea of

indexing.

(Refer Slide Time: 05:39)

So, indexing mechanism is used to speed up accesses to desired data. So, as as you have

just seen. So, what we search on is called the search key and an index file consists of the

index entries as you have just seen it has a search key and the pointer pointer is the

record number or the internal you know address of the record where it occurs and

certainly I have shown an example where there just two attributes in general there will be

a large number of attributes. So, the entry of every index would be much smaller than the

corresponding record.

So, the overall index file will be a much smaller one than the original and we can index it

and there are two basic ways to index and; that is what we will discuss through these

modules one is called ordered index where this search keys are stored in sorted order as

you have just seen and the other is hash indices where the search keys are distributed

randomly across different buckets. Using, concepts of hash function which you must

have studied as a part of your data structure course.

(Refer Slide Time: 06:44)

Now, if we I mean why what should we index on the basic question is should we index

on all attributes should we index on one attribute should we index on combination of

attributes. So, access. So, there are certain measures to decide as to what is a good way to

index. So, that will be that will be measured against the basic requirements of the

database that is I should be able to index in a way.

So, that the access time the insertion time the deletion time all these should get as

minimized as possible and as you have just seen indexing might mean maintaining

additional structures. So, that overhead of space should also be minimal. So, with that

with indexing we should be able to do at least certain kind of accesses where a particular

value matches the attribute of a record or falls within a range of values in a record those

kind of searches those kind of queries should become very efficient and these metrics

will have to always keep in mind.

(Refer Slide Time: 07:51)

So, let us look at the first concept of ordered index which is pretty much like what we

have just sent. So, in a sequentially ordered file the index whose search key specifies the

sequential order is known as the primary index. So, the sequential ordering is done based

on that primary index it is called also called the clustering index and please keep in mind

that the search key of a primary index is usually the primary key, but not necessarily the

primary key it could be different from the primary key also and if I create an index who

search key is different from the sequential order of the file then we say it is a secondary

index and it is also called the non clustering index. So, index sequential file is ordered

sequential file which is ordered on the primary index.

(Refer Slide Time: 08:44)

So, here I show an example and this is example of dense index file. So, you can see the

blue part is actual table which has different fields the id the name of the faculty, the

department, and the salary and this is as you can see that it is completely sorted on the id

in the increasing value of id and on the left the white is basically just the ids and with

every idea we have a pointer they record the number possibly of the record that it

corresponds to here all the indices that feature in the table are also put on the index file

and therefore, it is called a dense index you should also note on the right that the records

are interlinked through a chain I mean kind of they are being formed in terms of a linked

list whose purpose would be seen later on.

(Refer Slide Time: 09:40)

Now, instead of doing id if I want to do a dense index on department name, then

naturally the sequential file has to be indexed primarily on the department name and as

you can note that unlike the id which is also the primary key and therefore, every id

value was unique the department name is not a primary key it is a different attribute

which allows for multiple value multiple records having the same attribute value and

therefore, when we sort we have one instance of biology, but three of computer science

two of finance and so, on.

So, when we make the index we made the index collect all the distinct values of the

department names and for every department name we put a pointer we put the index

marking the first record in the sequential file with that department name. So, you can see

that your computer science points to the record starting with 1 0 1 0 1 and then the; it

goes on to the next two records.

So, now you can understand why we need the link list; because if we are looking for the

all those teachers all those faculty who are associated with department computer science,

then I can find it on the index file with the department name, computer science traveled

to the record first record in that which is of Srinivasan and then keep going on this list

through the linked list that we have on write and find the record for Katz and record for

Brandt and till we moved to the next record for Kim which does not match the

department name anymore.

(Refer Slide Time: 11:26)

Now instead of dense index we could also do sparse index. Tweak parse index it means

that instead of maintaining all the search key values that exist in the file we just take a

subset of that and we maintain those in the index file. So, here again we are showing a

index sequential structure with id being the primary index and we have chosen three of

the ids and kept them in the index file. So, in the sorted order so, this if you want to say

look at a record with search K value K we can find the index record with the largest key

value largest search key value id value which is less than K and then search sequentially

or onwards because these are all linked together in the sequential manner.

(Refer Slide Time: 12:18)

So, naturally compared to the dense index of sparse index takes less space and therefore,

less overhead for maintenance when we do insertion deletion you must have already

noted that if I were dense index then every time I insert a value it will have to be the

dense index file will also have to change changes will be required there for insertion as

well as for deletion for sparse index it will not be required, because it will just be

required when I am actually changing the record or creating a record which is existing on

the sparse index.

(Refer Slide Time: 13:11).

So that way it is it is better than the dense index, but certainly in the dense index I can go

to any record directly from indexing in the sparse index I need to first index and then go

sequentially. So, it will be in general slower in terms of performance and will need to

look at this tradeoff now it is also. So, these were the ways to do the primary indexing

where we decide the order in which we actually keep the record sorted or the fields on

which we do that and the index associated with it, but once since the data can be

primarily indexed on one or couple of attributes and that gets fixed.

But we may want to search for other values also to make that efficient we create a

secondary index. So, here we show an example where the primary index is id. So, the

whole recall records are sorted in terms of that and we are creating an index on the

salary. So, that we can quickly find the salary of and given the salary of an employee we

can quickly find the employee or the employees who get that salary.

So, you can see that for secondary index now it is quite possible that there are multiple

entries for the same value of salary for example, if you look at the salary eighty thousand

that is received by Professor Singh as well as Professor Kim. So, if you look at the index

file of the index sequence of the salary values you will find that against 80,000 we have

two entries which marked to two different records corresponding to the faculty who are

drawing that salary. So, secondary index naturally has to be dense and is created when

we want we feel that there is a need to quickly search on that field or that set of fields

and we will discuss more about those issues later on.

(Refer Slide Time: 14:46)

So, indices offer substantial benefits when searching for records, but updating index

impose over it; because if you create an index whenever you insert a record or a delete a

record or you change the value of a field which is indexed in a record then certainly all

these indices will have to be also updated and therefore, while your access time

significantly reduces, because of indexing your actual update insert delete update time

will increase and therefore, the indexing will have to be done carefully.

So, sequential scan using primary index is efficient, but sequential scan using secondary

index is expensive. So, you will have to bring them in blocks and that will require couple

of millisecond versus the amount of time that you need in the memory access. So, these

are the factors that we will have to take into consideration and we will talk more about

those.

(Refer Slide Time: 15:44)

Now, if I have a primary index then naturally to be able to access the records I will have

to first access the primary index and then do a search in that and then travers the point at

to go to the actual record in the file. So, to access the primary record we would prefer

that if the primary index can actually fit into the memory. So, that I can do a in memory

search like we do the binary search in a in an array.

So, because if the primary index is large then that also has to exist in the disk and

therefore, bringing that primary index into the memory and then searching will add two

additional access cost of the disk and you have already seen in the earlier modules as. So,

how these costs are expensive these accesses are expensive. So, primary index if it is not

in the memory then we usually have a lot of disadvantage.

So, to take care of that if you have primary index actually is large enough. So, that it

does not fit in memory then we simply apply the notion of indexing once again on the

primary index file itself. So, we construct a say on the primary index we construct a past

sparse index. So, which is called the outer index which is a sparse index of the primary

index and in that index is the actual primary index file.

So, if now in turn the outer index the sparse index of the primary index also is too large

to fit in memory then you need to do yet another level of indexing on it and. So, on till

you come to a index of list which fits into a memory can be directly accessed. So, the

cost for that so, this is what is called a multi level indexing.

Because, you are following multiple levels for indexing and the cost naturally of update

insert delete increases; because now all of these multiple levels of indices will have to be

updated.

(Refer Slide Time: 17:48)

When you do an update so, this is what is a view of the multi level index you can see the

outer index which is sparsely index and index those lead to different blocks of primary

index of the of the inner index which is the primary index and then you traverse to the

specific block where your record is expected. So, with this you since your outer index are

in memory. So, you need to do one disk fetch for finding out the inner index block which

should be one disk page or disk block one axis and then based on that to find another

access to for the block in which the record exists.

So, with this you would be able to manage with to block accesses in this case and that is

how the multiple this would not have been possible if in this case you would not have

done the sparse outer index, because you would have required the different parts of the

inner index of the primary index to be fetched repeatedly from the disk till you act could

actually find the final result in that.

(Refer Slide Time: 18:59)

So, updating the index particularly if you do deletion then the if it is a dense index then

the deletion of the search key is similar to deletion of the actual record in the file because

it is dense if these parts, then naturally you will have to take care of some of the cases,

because if it falls within a range then just deleting it would not matter, but if it falls on

the boundary where it is actually sparsely indexed then that will have to be appropriately

updated.

(Refer Slide Time: 19:32)

Similar thing will have to be taken care of in terms of insertion. So, first you will have to

look up to find out to where the record needs to be inserted and then if it is a dense index

if the search key does not appear in the index then you will have to insert it in case of

sparse index you will have to do the additional care that whether it already belongs to the

range and or whether if it will have to be a new block has to be created then it has to be

also entered in terms of the sparse index and if you have multi level indexing then

insertion deletion will be extensions of these basic algorithms.

(Refer Slide Time: 20:14)

For secondary indices frequently we want to find all records where certain value in a

certain field which is not the search key or the; of the primary index satisfy some

condition. And, we can have a secondary index with an index record for each of this

search key values depending on what we expect what we would think or likely fields on

which more search will be done.

(Refer Slide Time: 20:45)

Or more range queries will be done. So, to summarize we have taken a brief look at the

basic reasons for indexing database tables which is to speed up the process of access

insert and delete and we have seen that primarily indexing primarily focuses on speeding

up the access process.

So, in that maintenance of indexing whereas, insertion and deletion might have some

additional overhead, but since insertion and deletion both inherently needs access to be

done because you can insert only when you have tried to access and have not found

exactly where the record should occur or for deletion; obviously, you need to first find

the record to be able to delete it.

So, even though it is focused indexing is focused on improving the access time it actually

improves the time for access insert delete all of that, but we will have to keep in mind

that in the process there are certain overheads of index update for insert and delete that

will have to be kept as a minimal and the additional storage requirement will also have to

be kept as a least overhead. So, with this we will close this module we have taken the

basic look at the index sequential access mechanism this is called index sequential access

mechanism associated with different database index files.

