
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 31
Transactions/1

Welcome to module 31 of Database Management System. This module and the few

following it will be on transactions. So, we have so far, through the modules that you

have done we have so far looked at the first the schema of a database system, which is

the plan the layout of how the data will be organized. Then we have looked at if the data

is populated, then how we can query how we can manipulate the data.

We have looked at how the data is actually physically stored, and how it can be

efficiently accessed through different mechanisms in the storage. Now we will focus on

the actual execution time. We will focus on what goes on when the data in a database

system is accessed, it is read, locally modified and then written back. In a very simple

terms this is the operation that keeps on happening in the database systems, which we

will identify which we say are transactions.

(Refer Slide Time: 01:40)

So, this is what we had done in the last week talking about index.

(Refer Slide Time: 01:46)

And we now start with the understanding of this concept of transaction, and we explore

various issues related to concurrent execution of transactions. So, we will explain in

more detail what this mean.

(Refer Slide Time: 02:03)

And these are the 3 topics that we will focus on in this module.

(Refer Slide Time: 02:13)

So, let us first take a look at what does a transaction mean. We say transaction is a unit of

program execution that accesses and possibly updates, we data items.

So, it greets possibly makes some local changes and then it writes it back. So, here is an

example of a transaction. So, without that detail unnecessary details what it looks at there

are 2 accounts account A and B, and we want to transfer 50 dollars from account A to

account B. So, we want to we need to debit account A by 50 dollars, and then credit

account B by 50 dollars that will achieve the transfer. So, to start this process we first

need to know what is the current balance of the account A.

So, that is done by read the first instruction. Then so, A after reading a has come into a

local buffer into a temporary which exists in memory, if the current balance was 200

dollar, then that has not changed that remains to be 200 dollar a has become is a local

variable which is taken the value 200 dollar now. So, we locally change it we debit 50

dollars from that. So, a becomes 100 and 50 dollar, and then we write it back. So, in the

account balance where it was 200 dollar, it will now become 100 and 50 dollar with this

50 dollars debited.

Then we have to do the credit process to the account B. So, in the 4th instruction we read

B. So, let us say the current balance of account B was 300 dollar, then read B will make

the temporary variable B as 300 we credit 300; that is, we add 50 dollars to that it

becomes 300 and 50, and then we write B onto the account based balance. So, account-

based balance will now change to 300 and 50 dollar.

So, this whole sequence of 6 instructions is called a transaction. And as you can

understand that to achieve our target of transferring 50 dollars from account A to account

B, all these 6 instructions have to execute in this order so that we can get the desired

results. Now the question is; so, this is pretty simple, this is like a very simple low-level

program. But there are 2 main issues that we have to deal with. First, what is the

guarantee that once the instruction one starts? What is the guarantee that it will continue

up to instruction 6?

There may be some failures in between the disk may fail the hardware may fail the

system may crash. So, what will happen to the state of the database? What will happen to

the values that exist in the database? What will happen to the target operation that we

wanted to do achieved through this transaction if such failures happen. A second issue is,

we need multiple transactions to execute concurrently. What it means that, suppose I am

working on a net banking updating my account I am making transfers to another party

whom I need to pay. At the same time, several other people are also doing operations on

their accounts, respective accounts.

Lot of other operations might happen from the database itself. For example, while I am

making a transfer at that same time the database may be crediting some quarterly interest

to my account. All these transactions, actually execute concurrently, which means that,

they all are independently executing. They use the same CPU, but they achieve the result

at the same time. So, it is not that the transactions are actually happening on separate

machines, the transactions have to take effect on the same database.

So, they have to occur in a concurrent manner, that is what we see is a concurrent manner

because they occur together. And while this is going on, how do we ensure, but there is

one CPU. So, the CPU is executing these instructions in some order. So, how do we

ensure that this in the face of such concurrency the transactions will still give me correct

result? So, these are the 2 major issues for which we are going to study about

transactions, and what we in general say the transaction management systems.

(Refer Slide Time: 07:25)

So, we first set the targets we put some required properties of a transaction. The first

requirement is atomicity.

Suppose again just look at the same transaction, suppose the system crashes there is a

system failure after the first 3 instructions has happened and 4th instruction was about to

happen. So, what will happen? The already the account A has been debited by 50 dollars

and account B has not yet been credited with that 50 dollars. So, simply at this point if

the transaction if the system failure happens, then simply 50 dollars will disappear from

the system it will not exist. So, the basic requirement is that once a transaction start it

should either completely happen it should either do all the 6 instruction as in this case or

it should do nothing.

So, there is an all or none kind of requirement that is what we say it is like. So,

transactions in a way are indivisible or atomic and this is the atomicity requirement.

(Refer Slide Time: 08:35)

The second requirement is called consistency requirement. That is as the transactions are

making changes to the database at, through these changes the integrity of the database

the consistency of the values should not get affected.

So, if we there are certain specific integrity constraints we have talked of primary keys

foreign keys and so on. And there could be implicit domain integrity constraints. For

example, in this accounting case if we are making transfers, then while making a transfer

from account A to account B the sum of the balances in account and account B before the

transfer and after the transfer must the same.

So, money should not disappear, neither should get should it get generated. So, what we

assume that a transaction when it starts to execute. It must start in a consistent database

which is correct in every respect. During the transaction there may be temporary

inconsistency. For example, if you look at instruction 4 or instruction 5 at this time, the

account A has already been debited by 50 dollars the account B has not been credited by

that 50 dollar. So, if you add instruction 4 if you try to see, what is the sum of the balance

in account A and account B you will see that sum is 50 dollars less. But when the

transaction completes, it completes the instruction 6, then again, the sum will be same as

thus as it were at the beginning.

So, at the beginning of an execution, and at the end of a successful execution the

database must be consistent in between there may be transient inconsistency. So, this is

called the consistency requirement.

(Refer Slide Time: 10:28)

The third is again first look at the example the same on the left is a transaction T 1 which

is the transaction we have been talking of. And suppose there is another transaction T 2

which happens concurrently. If it happens concurrently the transaction T 2 has let us say

3 instructions read A read B and print A plus B. So, it tries to read the balance of account

A and B and prints their sum.

Obviously, if the transaction T 2 is allowed these 3 instructions of transaction T 2 if they

are allowed to be executed; between instruction 3 and instruction 4 of transaction T 1,

then T 2 will print a sum of A plus B which is 50 dollars less, than the sum of A plus B at

the beginning. So, it will become it will appear as if there is some inconsistency that has

happened.

So, the isolation requirement says that when transactions occur concurrently, the net

effect of the transactions should be as if they happen either first T 1 happened and then T

2 happen. Over first u or T 2 executed and then T 1 executed. The though even though

they can may execute in a concurrent or mixed manner, the result of such inconsistent

state of the database should not be available to the other transactions. So, this is called

the isolation requirement.

So, that transactions need to be isolated appropriately; so that they can obviously if they

execute serially then the isolation is trivially satisfied, but that will mean that your

throughput, your performance will be very low. So, we need transactions to happen

concurrently, but the isolation must be satisfied.

(Refer Slide Time: 12:24)

The 4th is called the durability requirement, which says that if a transaction has finally,

completed successfully. Then the update the changes that the database that has been

made by the transaction, that must persist even if there is some software or hardware

failures in future so once.

This transaction of transferring 50 dollar from A to B has successfully completed with

the 6 instructions having been executed and the money have been transferred, that will

should persist even if subsequently some error some failures in the database will occur.

So, it must be the changes must be durable.

(Refer Slide Time: 13:11)

So, these 4 properties are together called the acid properties of a transaction system. So,

acid means a for atomicity that either all operation of the transaction are properly

reflected in the database or none of them are reflected consistency c for consistency

execution of a transaction in isolation preserves the consistency in the database.

The isolation requirement, that if multiple transactions are occurring concurrently,

transaction T ir T jr occurring concurrently that is some instruction of T i happen then

some instructions of T j happen then some instruction of T i again happen and in this

manner. Even then, the final result should look like as if T i has happened followed by T j

or T j has first executed followed by T i the isolation i for isolation and finally, durability

once the successfully transactions have completed the changes in the database should

persist. So, a cid the acid properties are the critical properties of the transaction system

and must always be satisfied.

Next what we look at is as transactions go through each and every instruction.

(Refer Slide Time: 14:29)

The transaction happened to be in one of the different states. So, while the transaction as

soon as the transaction starts and starts executing starting from the initial state it is in an

active state. So, consider this same transaction is done read it is in active state it has

decremented A by 50 it is in active state and so on. So, as long as it is executing, it is in

active state, unless it has first let us talk about success.

So, once it has executed the last treatment, last instruction that is instruction 6 here, it is

in a state that is called partially committed. So, it has been able to successfully complete

all the instructions. Or it might happen that during being in the active state, or being in

the partially committed state some errors has happened so that the normal execution

cannot proceed any further. Then, the transaction comes in to the failed state. A

transaction which is in the failed state will eventually get aborted, because it is not

known when the failure has happened.

So, naturally at the time of failure there could be an inconsistency failure could have

happened in the 4th instruction in this transaction and as you have already noted. That a

has already been debited by 50 dollars and B has not been credited that 50 dollars so, it is

in an inconsistent state. Say failure if the transaction is in a failed state likes this then we

need to rollback, we need to undo the changes that we have done. We need to credit back

the 50 dollars that was debited from A, so that we can reach a consistent state.

And once we have done that once we have done this rollback successfully, the

transaction goes to an aborted state that is it could not take place, and after that you have

2 choices either you can restart the transaction, or you can totally kill the transaction do

not do it at all depending on different situation that choice is made. In the other case if it

is it were partially committed, then all instructions had completed, now the bookkeeping

and other actions were required. If there is some failure during that time from partially

committed it comes to fail state, and then goes to abroad state as I have already

explained. Or it actually commits all the changes correctly and it has completed

successfully and it goes to a committed state where the transaction has successfully

finished.

So, every transaction will go through this state at any point of time a transaction will be

in one of the states, and depending on the status of execution it will continue to remain in

that state or will change state.

(Refer Slide Time: 17:26)

So, this state transition diagram for transactions are very important, and you must

thoroughly understand what is happening and remember this particular state transition

ok. Now let us look into the actual concrete execution situations.

(Refer Slide Time: 17:44)

So, in the concurrent execution situation, what we have we have multiple transactions

that run at the same time on the system. So, that will advantages it will increase

throughput, it will increase processor and discrete realization for example, when one

transaction is doing some operations with on the CPU, some internal computations are

going on the disk can still be accessed by another transaction to read or write some

values.

So, the throughput will increase and also the average response time will reduce because

there may be a short transaction which if it were serially done then it will have to wait

for a very long transaction, which may already been executed executing, but if we allow

concurrent execution then in between that long transaction few cycles may be taken to

execute the short transaction and the average response time will improve.

So, that is our basic requirement. Naturally we need to do this in a controlled manner so

that we ensure that the acid property is the consistency of the database and the acid

properties are maintained.

(Refer Slide Time: 18:50)

So, for doing this we create what is called a schedule? A schedule is a sequence of

instructions that specify, the chronological, or the time wise order in which instructions

of concurrent transactions are executed. So, what is what will the schedule will have?

Scheduler will have for a set of it is defined for the set of transactions. And it must

consist of all instructions of those transactions. And in a certain order, and what is the

basic requirement that in this schedule in this ordering, the original order of instructions

in any of this given transaction, you have an individual transaction must be preserved.

But the instructions from different transaction can be interleaved, intermixed in between

to prepare the schedule. So, a transaction that successfully completes it is execution will

perform what is called a commit instruction we will more specifically say what is

commit a commit instruction, which means successful completion as the last statement

that should be the last statement if the committee is not given by default also transactions

which have executed successfully are assumed to have executed commit, or if the

transaction fails to successfully complete the execution; that means, we will do abort as a

last statement ok.

(Refer Slide Time: 20:12)

So, let us take an example so, again we are going back to the same example. So, we have

2 transactions T 1 and T 2. T 1 transfers 50 dollars from a to B as we have seen. And T 2

transfers 10 percent of the balance from A to B. So, one transaction debits 50 dollars one

transaction debits 10 percent of the account balance of A to B. So, if they are serially

executed as you can see here we are serially executing them as in. So, first you first your

whole of T 1 is executing, and once this has committed, that is successfully ended then T

2 is executing.

So, at the beginning if we assume this is just an assumption. If we assume at the

beginning that a had 100 dollar and we had 200 dollar, then the sum was 300 dollar. So,

if the a is red 100 dollar is red then it becomes 50 then you write this A. So, when you

are here at this point, you can see, this is what you will have because a has changed from

100 to 50 because you have debited B nothing has happened on B so, some is 250. So,

you can see that is why I have shown different colors you can see at 250. This state of the

database is temporarily inconsistent because the sum has become different from 300.

Then it reads B it reads 200 adds that 250 it writes B. You come to this point where after

this right, when the commit is happening after the writing this B. Then T 1 has actually

completed, and 50 dollars has got transferred to account B, and the sum is again back to

300 so, consistency is preserved. Then transaction 2 starts so, a is red 50 dollars is red in

temporary you compute 5 10 percent of that 5 dollar you decrement a by 5 dollar and

write it back.

So, when you have written it back, you write back 45 dollar. Again, naturally the sum

becomes 5 dollar less, the 5 dollar that you have kept in this temp, and this becomes

again transitively inconsistent in the process. Then you do the read B, ad that temporary

5 dollar back to B and then you finally, when you write B here you write back from 200

and 50 you have added 5 dollar to 255, and again the sum becomes 300 you are again

back to the consistent state.

So, you can see, through this process that when transactions actually happen in a serial

manner, this is how things will move on so, which is quite understandable.

(Refer Slide Time: 23:05)

So, let us move on let us. So, this is a different schedule you can see, but this is also a

serial schedule here what we have assumed that all instructions of T 2 are done first then

all instructions of T 1. I am not going through the going through each step you can see

what are the consistent, and the temporarily inconsistently states of the database, but at

the end the database is in a consistent state.

And you can note that now the end value of a is 40 dollar, and n value of B is 2 60 dollar.

In the previous schedule, the value was 45 dollar, and 255 dollar these 2 are different.

But both of them are actually correct both of them are consistent, because when things

happen in this distributed manner, we have no control in terms of whether that whether

first 50 dollars should be debited and then 10 should be debited transferred. Or whether

first 10 should be transferred or 50 dollars where will be transferred after that, either of

that is a correct consistent state.

So, the different schedules might give you different results that is not of any concern

because both of them are possible valid results. But the question is it must finally, have a

consistent state of the database so, both of these are consistent.

(Refer Slide Time: 24:20)

Now, take an interesting example, where schedule 3 where in here if you, if you look at

carefully there are few instructions of T 1 which are executed. And then in the temporal

order few other instructs, few instructions of T 2 are executed, then again T 1 then again

T 2.

So, the instructions from 2 different transactions are getting interleaved. And this is what

the execution status would be. So, you can see that when you are when T 1 writes a this

is where you are 50 dollars has been debited. Then when T 2 writes a subsequently,

another 5 dollar is debited so, it becomes 45. So, then you have T 1 again executing and

adding B on to that. And by that it is not only that it has gone into an inconsistent, it is it

was already in an inconsistent state, but that was transient that was temporary. But now

the transaction T 1 has totally completed. It is completed his execution it is at it is

commit, but your database is still in an inconsistent state.

So, this is something which is possible, because you are doing an interleaving of the

instructions of the 2 transactions in the schedule. But once you allow the rest of the

transaction B this part to complete that is B gets updated and you reach here. And that

also has committed. So, your schedule comprised of transaction one and transaction 2,

when both of them have completed you have again reached state which is consistent.

And if you look at the results of what you have achieved you will immediately identify

that this doing it doing the transactions according to schedule 3, which is interleaving in

this manner is equivalent to this in this manner of interleaving is equivalent to doing

them according to in this manner which is schedule one.

So, you have got a schedule which is equivalent to schedule one. And it is therefore, so,

this is just an example to show that it is actually possible to interleave the instructions of

2 transactions, and create a schedule which will still which might in the in the process

have transient or even inconsistent commit states of the database. But finally, when the

schedule ends it will it is possible that it will bring you to a consistent state.

(Refer Slide Time: 26:58)

Now, look at again for those transactions look at a different interleaving, a different

schedule, again T 1 T 2 are involved. But you have now tried to interleave them in a in a

different order. So, earlier the interleaving was done after T 1 has done right, here it is

done after he has been the locally debited by 50. And then this part is done and then the

right is happening. And now if you go through the steps I will leave it as an exercise for

you in schedule 4.

Now, if you go through the state you will find that when transaction T 1 commits ends

here, you have an inconsistent state. And finally, even when the schedule ends that T 2

has committed. There is A, you are in an inconsistent state somehow that sum of A and B

which was 350 has become 300 has become 350 so, 50 dollars as what generated. So,

this is so you can see that if you interleave the transactions, then it is quite possible that

the transactions will may or may not actually give you a consistent data base.

(Refer Slide Time: 28:07)

So, here in this module, we have understood the basic tasks that a data bit base performs

database executes; which is in form of a transaction. And we have seen that they must

satisfy a set of properties typically called the acid properties, and atomicity, consistency,

isolation and durability must be satisfied. And when the transactions are executed in

concurrent fashion, we improve the throughput, but the concurrent execution of

transaction raise issues of serializability; that is, the concurrent execution that the

interleaved schedule of instruction of 2 or more transactions can give rise to certain

effect which violate the acid properties.

And those need to be addressed that certainly inconsistent database is certainly never

acceptable. And so that is the basic problem that we have identified which we will have

to address in the coming modules.

