
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 33
Transactions/3 : Recoverability

Welcome to module 33 of Database Management Systems. This is on transactions again

there is a third and closing module on transactions and, we will discuss recoverability

issues and some more of the serializability issues in this module.

(Refer Slide Time: 00:40)

In the last module we have talked at length about serializability and specifically, we

looked at what is known as conflict serializability and the algorithm to detect that. ah

(Refer Slide Time: 00:50)

Now, we would bring in another perspective is if while a transaction is in execution what

if the system would fail the failure may be due to hardware software, various different

reasons power outage, disk crash and so on. So, why when that happens the database is

likely to come into an inconsistent state. So, we would like to discuss how to recover

from that inconsistent state and bring it back to a consistent state.

We would also look at that going forward from conflict serializability, what are the other

notions of serializability, that can be used to serialize transactions and we will look at a

weaker definition of serializability known as view serializability, which can serialize

more schedules than what conflict serializability can give us.

(Refer Slide Time: 01:51)

So, these are the topics to discuss and we start with recoverability and isolation.

(Refer Slide Time: 01:57)

So, what we have done is we have seen the serializability help us, if we think in terms of

the acid properties that we started by defining as the desirable properties of the

transactions, we have seen that the serializability significantly helps us to achieve

isolation and consistency of a schedule, yet the atomicity and consistency may be

compromised, if there is a system failure.

So, we had talked about this example a bit earlier again let us take a look. So, this is a

transaction where an amount of 50 dollar is being transferred from account A to account

B. So, he first read debit and then write on account A and then read credit and write to

account B and we have added a 7th instruction, which is commit and I will talk more

about that in this module which makes that changes to a and B permanent and shows a

result to the user as well.

Now, what happens if the system fails between step 3 and after step 3 when a has been

written and between before step 4 step 6 when B has finally, been written. So, naturally

50 dollars will simply disappear because what has been debited from A and will be

available to be seen in account A will the corresponding credit will not be visible.

So, this leads to inconsistent state and to handle that what we need to do is to roll back

the transaction, which means that we need to undo the changes that we have already

done. So, we have to again go back to account A and write a new value which was the

earlier value the value before the debit had happened. And this process of restoring the

consistency back to the database is known as the recovery process.

(Refer Slide Time: 03:58)

So, we say that a so, let us define a schedule to be recoverable if a transaction T j reads A

data previously written by a transaction T i, then the commit operation of T i must appear

before the commit operation of T j, if that happens then that is the earlier transaction

which has written the data and T j the later transaction which is reading the data the

earlier transaction has to commit that is make the changes permanent in the database

before T j actually reads it. If that happens, then we say that that schedule is a

recoverable schedule.

So, consider a following schedule of transactions T 8 and T 9 where T 8 has read and

written A, but has not committed; that means, some more tasks in T 8 are still pending it

has not finished, but T 9 then reads A which is a in terms of serializability it is fine, but

then T 9 commits and then T 8 is again trying to read B the continues. So, what happens

is what if the transaction will fail the transaction T 9 will fail immediately after the read

operation.

So, what will happen I am sorry, if T 8 aborts in between, then what will happen that T 9

would have read because, say in read B or of T 8 T 8 aborts that it fails, then T 9 has

already read the intermediate value of A and has committed which means it is possibly

shown it to the user, but T 8 since it has aborted sent it has failed, it has to be rolled back

and the original value of A will be rolled back which is different from what has already

been shown to the user and he will reach an inconsistent state.

(Refer Slide Time: 06:01)

So, this is an example of a schedule which is not recoverable. Now let us also observe

that a single transaction failure not only means that one transaction needs to be rolled

back, but it could have a cascading effect, that is a series of transaction may require a

rollback. So, here is an example of T 10 T 11 and T 12. So, T 10 reads A and B and

writes A and then T 11 reads and writes A and T 12 reads A and at that time if T 10 fails

if that aborts, then naturally it is not enough to simply roll back T 10 because, if we roll

back T 10, then we the value of a goes back to the original and T 11 would have a wrong

value which T 10 had written, but has now been undone has now been rolled back.

So, it means that T 11 will also have to be rolled back. Similarly if that is rolled back

then naturally T 12 also have to be rolled back and so on and when this rolling back goes

from one transaction to the other we say this is the cascading roll back. And this can lead

to a significant amount of work.

(Refer Slide Time: 07:15)

So, what we would prefer is if we could have schedules where such cascading roll back

is not required. So, and there is a there is a condition through which you can achieve that.

So, if we have a pair of transaction T i and T j. So, that T j reads A data item previously

written by T i, then the commit operation of T i has to happen before the read operation

of T j which means that said in other words that T j should read only read values which

are already committed and not read intermediate temporary values of other transactions.

So, every cascadable schedule is also recoverable because, you can individually recover

that and it is desirable to restrict schedules to those which are cascade less as far as

possible, we will see that in non not all cases that is possible, but if it is possible you

would like schedules which are cascade less. So, that covered a rollback work the extra

work can be minimized. So, here is an example which we had just seen which is not a

cascadable schedule.

(Refer Slide Time: 08:25)

So, wait for word let us take a couple of examples of very similar transactions and, we

would see when their schedules are irrecoverable, when their cascade dead recovery is

possible cascaded rollback is possible and, when cascade less rollback is possible. So, if

you so, here what I have done is I have shown here the 2 transactions T 1 and T 2. And

this is what transaction T 1 is doing and we assume that in the in the database the initial

value of a is 5000.

So, what will happen is read here and this value is a different A this is in the buffer or the

memory of T 1 transaction, where A becomes 5000, then you subtract 1000 and then you

write back the moment you write back in the database in between the value in the

database is not changing, it is only that value is only in the buffer and, when you write

back the value in the database has changed.

And then transaction T 2 reads that value. So, in its local buffer a becomes 4000 it

increments by 500 and then writes it back and when that happens, then in the database

also the value has changed to 4500 and then T 2 commits and at this point let us assume

that there was if there was a failure. So, this is the point where there was a failure there

were other instructions in T 1 as well which is not of our interest right now, and then T 1

would have committed, but what happens if the failure happens at this point naturally the

T 1 needs to roll back T 1 needs to undo this and set the this value 5000 back into the

database.

But that would mean that what T 2 has committed T 2 has already committed this value

4500 in the database and therefore, that has been probably been used in other places and

shown to the user that will create an inconsistency in the database. So, these are this is a

schedule of T 1 and T 2 which cannot be recovered from. So, let us and so what it has

what has been violated that T 2 has actually read A value which was in transit and, then it

has already committed based on that read value.

(Refer Slide Time: 10:57)

Now, let us look into the next. So, what has been done here that all the changes are the

same, but the only point that we have done is we have changed the point where the

comet happens again still the T 2 is reading the same value in our in a and is making the

updates 4500, but the commit happens at a later point of time after the commit of this

transaction T 1 has taken place.

So, this is recoverable, but if we want to recover T 1 naturally; that means, that for T 1 to

be recovered, I also need to recover T 2 because T 2 is used a value which is not going to

be the value in after the rollback of T 1 has happened T 2 has used 4000, but after the

rollback the value in the database will be back to 5000. So, it is the rollback is required

for T 1 as well as in T 2. So, this is a case of cascaded cascading roll back that has

happened. So, some more work is being done and that has happened because T 2 now

here the rollback is possible because T 2 is committing after T 1.

So, the transaction it is reading from it is actually committing the changes after that

source transaction has committed. So, that satisfies the condition of recoverable

schedule. So, you are able to recover, but it still required the cascading because T 1 had

read A value in here of A which was not yet committed. So, if we would have committed

that, then we would have been able to actually create a schedule which is cascade less as

we see in the next slide.

So, now I what the change that has happened is a commit is done, right after writing the

value of A and T 2 reads that only after that commit has happened, earlier it was reading

before that commit has happened. So, once T 2 reads it after this commit. So, if there is

some there is some requirement of if there is some situation of rollback, then only T 1

needs to be rolled back and T 2 does not need to be a rollback because, it has used a

value which is already committed.

So, this is the basic through the example you can clearly see, what is how the rollback

can happen and in a later module, we will discuss the processes of how to do this kind of

rollback the cascading and non cascading both kinds and show how to go ahead with

that, but now for now what we learned is schedules need to be recoverable and,

preferably cascade less rollback recovery schedules are preferred in case of database

transactions.

Now, let us move on and talk little bit about what is available in SQL language in terms

of handling transactions.

(Refer Slide Time: 14:12)

So, SQL we have seen the kind of DDL data definition and data manipulation language

paths and those were discussed in terms of our interactive session as well. As a part of

data manipulation it is also possible to specify certain specific transaction events. So, a

transaction in SQL typically begins implicitly and, it ends by a commit work which says

that let us, you commit the current transaction that is make all the changes permanent, in

the database make it visible to the user and begin a new work, or it could roll back the

transaction which means that all the changes that you had done are rolled back and the

transaction basically aborts.

So, in almost all systems by default every SQL statement commits implicitly and, if it

has been able to execute successfully, otherwise it rolls back and this implicit commit

can be controlled also, it can be in different system there are different ways to control

that and say that I do not want implicit commit I would only want commit to be done

explicitly.

(Refer Slide Time: 15:22)

So, for that purpose a part of SQL called the transaction control language has different

instructions commit to save the changes roll back to roll back, the changes undo the

changes and also to do some do, it in some controlled way by defining save point and

you can also set the a particular name to a transaction and it is behavior.

So, let us look at examples for doing that soon and these TCL commands are used with

specific DML commands they are meaningful in terms of insert update and delete only

for example, if you are creating a database or you are doing a select to data retrieval, then

these instructions have no role in those transactions.

(Refer Slide Time: 16:09)

So, commit is a transaction command which is used to save changes and make them

permanent based on what has been invoked. So, here you see the example of a customer

database and, what I am showing is if you this is the initial state of that table and, before

any value has been deleted and if you do select star from customers these 7 records is

what you get to see, in view of that you do a delete and then you commit the delete.

So, we say that I have deleted and make that deletion permanent. So, deleting based on

age. So, this record is supposed to be get deleted and this record is supposed to get

deleted and, after I have done the commit then again if I do the same data retrieval. And

now I get to see 5 records only the 2 record number 2 and record number 4 have been

permanently deleted. So, this is the way you can explicitly do commit and make the

changes permanent.

(Refer Slide Time: 17:11)

In terms of rollback it is a command which is used to undo transactions that is the

changes that have already not been saved to the database you can roll back.

So, you can roll back or undo transactions only back up in history up to the last commit,

or the last rollback command was issued on this. So, again looking at the same example

this is the initial state and, then you did a delete as we did last time. So, these 2 records

are to be deleted, but then instead of commit we have given a rollback. So, as you give

rollback these deletion operations get undone. So, these 2 records are again back to the

table and so, after the rollback if I again do the select I will get to see the 2 records back

in my list. So, this is the purpose of the rollback command.

(Refer Slide Time: 18:09)

Now, you can a transactions often could be long. So, within the transaction you may

want to mark certain points. So, that in case you roll back or you need to roll back, you

can roll back to that particular point and those points are in the transaction are known as

the save point. So, this is the format use a save point and give it a name and, then later on

you can use those save points for your purpose of rollback.

So, you are again if you are doing a rollback, then you instead of just doing rollback, you

now use the save point ID that you had used in naming that particular point up to which

you want to roll back and, do a rollback and that will happen only up to that point. So, let

us look at an example so, here it is a series of instructions in a in a DML transaction. So,

I initially set SP one as a save point that is I may want to roll back to the beginning,

when I delete one record say ID 1. So, 1 record gets deleted, then I again save another

save point another save point SP 2 this was SP 1 and, then delete a second record another

save point delete another record.

So, now I have a control to undo at this point have a control to undo to 3 points for

example, if I do a rollback 2 SP 3 I will roll back to this point, where only this record

will be deletion of this record will be undone, but the first 2 records will still look show

as deleted, but if I roll back to save point SP 2, then 2 records ID 2 and ID 3 that were

deleted their deletion will be undone and only 1 deletion will look up. Similarly if I roll

back to SP 1, it will show that no deletion as it all happened.

(Refer Slide Time: 20:14)

So, if I do that on the this is the initial state on the left to the initial state of the database 3

records have been deleted and, then I do undo off the first deletion of the first 2 and I roll

back to SP 2.

So, then when I undo the deletion of the last 2 records, then the what I see is the records

which are marked as ID 2 and ID 3, which were done after SP 2 was marked which were

deleted after SP 2 are marked, they are back into the table whereas, the deletion of SP 1

is still in effect and therefore, deletion that was none after SP 1 that is of record ID 1 is

still missing and in this way you can control and roll back to any specific point in a

database in a database transaction.

(Refer Slide Time: 21:13)

You can once you have marked a safe point you can also, release the safe point that is

you can choose to forget that safe point. Once a safe point has been released you cannot

roll back to that safe point naturally.

(Refer Slide Time: 21:26)

You can use set transaction command to initiate a database transaction also and, it is

typically used to specify the characteristics of the transaction, particularly if you want to

say whether a transaction is a read only transaction or a read write transaction, then you

can do it in this way, you can say set transaction and give a read or write flag read or

write or read only flag for that.

Let us quickly take a look at a different form of serializability besides the conflict

serializability is called view serializability.

(Refer Slide Time: 21:59)

So, in terms of view serializability we again define what is known as when are 2 tran

schedules defined to be view equivalent, earlier you remember we define 2 schedules to

be conflict equivalent, now we are defining view equivalent. So, there are 3 conditions

the conditions are simple what conditions say is a to try a schedules are view equivalent,

if the transaction the initial value that a transaction reads is same in both these schedules,

for every transaction the initial value that it reads must be the same between the 2

schedules.

Similarly, the third condition says that the final write that is done, final value that it

writes every transaction writes in both the schedules must be the same the same rights

should operate. And the second conditions is a read write pair that every transaction

when it performs a read on the data item, it must read from the write corresponding write

in the other schedule in by the same by the transaction that which did the right.

So, I always initialize start with the same initial values for every data item in both

schedules, I always read from the corresponding right in the same schedule in the 2

schedules and, I must write the final in every transaction every data item must be written

in the same way in the 2 schedules.

So, this is again and the key balance is based purely on read write alone as is the case of

conflict equivalence also.

(Refer Slide Time: 23:39)

So, given the definition of view equivalence, we can say schedule is the view

serializable, if it is view equivalent to a serial schedule earlier which said that a schedule

is conflict serializable, if it is conflict equivalent to a serial schedule. Now we are

defining the view serializability, with a little bit of thought you can convince yourself

that every conflict serializable schedule is also view serializable, but the reverse is not

true.

So, here is a schedule which is view serializable, but it is not conflict serializable, you

know this is not conflict serializable because, certainly you cannot make it into a serial

schedule make it equivalent to a serial schedule because, you cannot move this right Q

above the right Q of T 28 or of T 29, but you cannot move this either. So, given that but

if you in terms of the view equivalence we balance, then you will say that this is

equivalent to a serial schedule and what should be the serial schedule; obviously, there

are 6 choices because there are 3 schedules.

So, there are 6 possible permutations which give you 6 different serial schedules and if in

that so our first condition says that I must read from the same value so; obviously, T 27

reads the initial value of Q. So, T 27 has to be the first transaction, if the third condition

says that I must do the same right T 29 does the final right here. So, the in the serial

schedule also T 29 must be the last 1. So, T 28 has to be the middle 1.

So, the serial schedule that this is equivalent to is T 27 T 28 T 29 and, the 1 reads and the

other 2 rights and T 29 performs a final right. So, you can see that this is a this is not a

conflict serializable, but this is view serializable and if you note the view serializability

moment, you have you view serializability and you may not have conflict serializability,

then you must be having certain blind rights, these are called blind rights this is a blind

right, in the sense that here you are writing the value of Q in T 28 without having read it

is current or previous value. So, you have just blindly you had just computed some value

and you are writing to that.

So, if a schedule is not conflict serializable, but is view serializable it must have

performed some blind rights where it has written data without actually reading it. So, this

is a weaker form of serializability that is possible.

(Refer Slide Time: 26:20)

Now the question is similar to conflict serializability, where we saw that it schedule can

be conflict serializable, if it is corresponding precedence graph is a cyclic. So, we would

like to extend find out similar test for view serializability, but as it turns out that trying to

find out this is exponential in cost in terms of the size of the precedence graph.

So, it has been proved that the of checking, whether a schedule is view serializable is in

the class of NP complete problem. So, if you are good in algorithms. So, you will know

what NP problems are and when are problems called NP complete, in very simple terms

even if you are not familiar with that depth of algorithms, you can simply issue note that

if an algorithm is NP complete, then it is extremely unlikely that there exists in efficient

algorithm for.

It there exists any kind of polynomial time algorithm, it is extremely unlikely still not it

is still an open problem in computer science, whether a tall polynomial algorithm exists

for NP complete problems, but it is extremely unlikely that an efficient algorithm will

exist, you may have some approximate algorithms which can give sufficiency conditions

which can say that well if these conditions are satisfied, then necessarily a schedule is

view serializable, but not a sufficient condition are not a necessary condition, that is in

other words that there may be some schedules which do not satisfy the sufficient

condition, but are still view serializable.

(Refer Slide Time: 27:59)

So, using view serializability have certain problems. So, here I have worked out a longer

problem in terms of the view serializability to check that. So, it is kind of a brute force

algorithm. So, if you see this is the schedule given there are 2 data items A and B and

there are 3 transactions T 1 T 2 T 3. Since there are 3 transactions, then if I want to prove

if it is view serializable, then what I will have to do I will have to find a one of the

possible serial schedules which is view equivalent to this?

So, first I list out all the serial schedules given 3 transactions, there are 6 serial schedules

and then I first start with condition 3 which is who is doing the last update. So, there are

rights are only on B. So, and last of that are being done in all the 3 transactions. So, there

is no write on A so, the list of final update on A is empty and for B the order is T 1 T 2 T

3 so, T 3 does the last.

So, it must whatever schedule this whatever serial schedule this given schedule S has to

be view equivalent to must have T 3 as the last transaction to execute. So, only these 2

are the candidates which may be view equivalent to this schedule S.

(Refer Slide Time: 29:35)

So, we reduce down and now we have only to decide whether these 2 any of these 2 are

view equivalent to the given schedule S. So, moving on with that now next we check

condition 1 and condition 2 together.

So, condition one checks that they must read the same value in both the schedule. So, we

see that these are the reads that are happening on A. So, we see that on a there are reads

happening, I am sorry this is these are the 3 that is reading A. So, it happens in the order

of T 2 T 3 T 1 and T 3.

So, this is what you find and in terms of B we find that transaction 2 reads B and writes

it. So, it has to be in that order. So, it reads it does an initial read in terms of T 2 and, then

the first right of that read value is happening in the transaction T 1 after the update of the

read.

So, that means, that whatever schedule we look for in terms of view equivalence, they

must have in that schedule T 1 must follow T 2. So, T 2 must happen first because it

needs to read the initial value and, then that initial value is used by then there is a right

on by T 1. So, T 2 has to come before T 1 so; that means, we are already in terms of only

2 we have seen that there are 2 possible candidates based on condition 3, it is T T 1 T 3.

So, in these 2 we only can have this one which is satisfying the other conditions and

there is no read write sequence. So, we conclude that indeed T 2 T 1 T 3 satisfies all the 3

conditions of initial read write after read and the final right conditions and therefore, this

given schedule S is actually view equivalent to a serial schedule and, it is a view serial

schedule and can be used safely for the transaction.

(Refer Slide Time: 31:45)

There is another example given here, where there is there are 4 transactions R one R 2 R

3 and R 4 and there are 2 data items A and B and, you have to find out establish whether

this is view serializable or not, I am not working out this one this is worked out in the

presentation slide, but I will not show it here you are you should first try it out and, then

once you have been able to do it or you are unable to do that, then you check the solution

from the presentation slide.

(Refer Slide Time: 32:26)

There are different other complex motions of serializability also for example, if you look

at this particular schedule this actually is a serializable schedule, this is the effect that it

produces will be same as the serial schedule of T 1 T 5, but if you go through the

definitions of conflict equivalence and, view equivalence you will be able to show that

this schedule is neither conflict conflict serializable not view serializable, but yet given

the particular.

So, if you just look at the read write this is not a serializable schedule in terms of conflict

or view equivalence, but given the fact that it actually performs simple add subtract

operations on these variables, using the properties of add subtract operations you would

be able to you can actually see that this particular schedule actually is a serializable

schedule and, you will get whatever initial values you start with the value that you will

achieve through this schedule and the value that will achieve with the serial schedule T 1

T 5 are indeed same in every case.

But this is determining this requires the understanding of other instructions other

operations, besides the read and write. So, this is just to show you that using the read

write model and conflict and view equivalents and the only not the only ways of getting

to serializability there are more complex models, but we will not go into the depth of

these complex serializability aspect.

(Refer Slide Time: 33:56)

So, we have shown that with we have shown here that with proper planning, a database

can be recovered back to a consistent state from an inconsistent state, in case of system

failure.

And this such a recovery can be through cascaded or cascade lists rollback and, we have

also introduced a simpler model of serializability in terms of the view serializable, but

testing for view celerity is MD complete. So, as an effective algorithm it is not that

powerful.

