Database Management System
Prof. Partha Pratim Das
Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture — 33
Transactions/3 : Recoverability

Welcome to module 33 of Database Management Systems. This is on transactions again
there is a third and closing module on transactions and, we will discuss recoverability

issues and some more of the serializability issues in this module.

(Refer Slide Time: 00:40)

PFD

Module Recap

—

n Serializability
n Conflict Serializability

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

L RN A A R B
Daiabise Sysiem Concepls - § Edition n2 Silberschatz, Kerth and Sudarshan

In the last module we have talked at length about serializability and specifically, we

looked at what is known as conflict serializability and the algorithm to detect that. ah



(Refer Slide Time: 00:50)

—
&

Module Objectives

i

What happens if system fails while a fransaction is in execution? Can a consistent state be
reached for the database? Recoverability attempts to answer issues in state and transaction
recovery in the face of system failures

Conflict serializability is a crisp concept for concurrent execution that guarantees ACID
properties and has a simple detection algorithm. Yet anly few schedules are Conflict
serializable in praclice. There is a need fo explore - View Serializability - a weaker system for
better concurrency

WAYAM: NFTEL-MOC MOOCs Instructoe: Prof. P P Das. IT Kharageur. Jan-Apr, 7018

@ I I n' :'n m
Daiabuse Sysiem Concepls - 6 Edition nl Cfilberschatz, Korih and Sudarshan

Now, we would bring in another perspective is if while a transaction is in execution what

if the system would fail the failure may be due to hardware software, various different
reasons power outage, disk crash and so on. So, why when that happens the database is
likely to come into an inconsistent state. So, we would like to discuss how to recover

from that inconsistent state and bring it back to a consistent state.

We would also look at that going forward from conflict serializability, what are the other
notions of serializability, that can be used to serialize transactions and we will look at a
weaker definition of serializability known as view serializability, which can serialize

more schedules than what conflict serializability can give us.



(Refer Slide Time: 01:51)

E:

[

Module Outline

m Recoverability and Isolation
® Transaction Definition in SQL
B View Senalizability

m Complex Notions of Serializability

WAYAM: NFTEL-MOC MOOCs Instructore: Prof. P P Das. IT Kharageur. Jan-Apr. 7018

-] . m:m
Daiabiuse Sysiem Concepds - 6 Edition 4 Bilberschatz, Kerth and Sudarshan

So, these are the topics to discuss and we start with recoverability and isolation.

(Refer Slide Time: 01:57)

FRD

J

What is recovery?

§ Serializability helps fo ensure Isolation and Consistency of a schedule
B Yet, the Alomicity and Consistency may be compromised in the face of system failures
n Consider a schedule comprising a single transaction (obviously serial):
. read(A)
L A=A-50
. write(4)
. read(B}
. B:=B+50
6, write(B)
7. commit / Make the changes permanent; show the results fo the user
8 What if system fails after Step 3 and before Step 67
Leads to inconsistent state
Need to rollback update of A
B This is known as Recovery

L

SWAYAM: NPFTEL-MOC MOOTs Instructsr: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

‘BB R AN A, BD

Databixsé System Concepts - 6 Edition ns CSilbérachatr, Korth shd Sudarshan

So, what we have done is we have seen the serializability help us, if we think in terms of
the acid properties that we started by defining as the desirable properties of the
transactions, we have seen that the serializability significantly helps us to achieve
isolation and consistency of a schedule, yet the atomicity and consistency may be

compromised, if there is a system failure.



So, we had talked about this example a bit earlier again let us take a look. So, this is a
transaction where an amount of 50 dollar is being transferred from account A to account
B. So, he first read debit and then write on account A and then read credit and write to
account B and we have added a 7th instruction, which is commit and I will talk more
about that in this module which makes that changes to a and B permanent and shows a

result to the user as well.

Now, what happens if the system fails between step 3 and after step 3 when a has been
written and between before step 4 step 6 when B has finally, been written. So, naturally
50 dollars will simply disappear because what has been debited from A and will be

available to be seen in account A will the corresponding credit will not be visible.

So, this leads to inconsistent state and to handle that what we need to do is to roll back
the transaction, which means that we need to undo the changes that we have already
done. So, we have to again go back to account A and write a new value which was the
earlier value the value before the debit had happened. And this process of restoring the

consistency back to the database is known as the recovery process.

(Refer Slide Time: 03:58)

Recoverahle Schedules

L,

8 Recoverable schedule

If a transaction T reads a data item previously written by a transaction T, then the commit operation of
T, must appear before the commit operation of T,

B The following schedule is nat recoverable if T, commits immediately after the read(A) operation

read (4)
write (4)

read (A)
commit
read ()

B |f T; should abert, T; would have read (and possibly shown to the user) an inconsistent database state.
Hence, database must ensure that schedules are recoverable

WAYAM: NFTEL-MOC MOOCs Instructoe: Prof. P P Das. IT Kharageur. Jan-Apr. 7018

Daiabise Sysiem Concepds - § Edition n7 C8ilberschatr, Korih and Sudarshan

So, we say that a so, let us define a schedule to be recoverable if a transaction T j reads A

data previously written by a transaction T i, then the commit operation of T i must appear
before the commit operation of T j, if that happens then that is the earlier transaction

which has written the data and T j the later transaction which is reading the data the



earlier transaction has to commit that is make the changes permanent in the database
before T j actually reads it. If that happens, then we say that that schedule is a

recoverable schedule.

So, consider a following schedule of transactions T 8 and T 9 where T 8 has read and
written A, but has not committed; that means, some more tasks in T 8 are still pending it
has not finished, but T 9 then reads A which is a in terms of serializability it is fine, but
then T 9 commits and then T 8 is again trying to read B the continues. So, what happens
is what if the transaction will fail the transaction T 9 will fail immediately after the read

operation.

So, what will happen I am sorry, if T 8 aborts in between, then what will happen that T 9
would have read because, say in read B or of T 8 T 8 aborts that it fails, then T 9 has
already read the intermediate value of A and has committed which means it is possibly
shown it to the user, but T 8 since it has aborted sent it has failed, it has to be rolled back
and the original value of A will be rolled back which is different from what has already

been shown to the user and he will reach an inconsistent state.

(Refer Slide Time: 06:01)

Cascading Rollbacks

=

Cascading rollback - a single transaction failure leads to a series of transaction rollbacks.
Consider the following schedule where none of the transactions has yet committed (so the
schedule is recoverable)

T:n | T.' 1 | TIJ

read (A)
read (K}
write (4)
read (A)
write (4)
read (A)
abort

If T fails, T,, and Ty, must also be rolled back
Can lead to the undoing of a significant amount of work

SWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagewr. Jan-Apr. 2018
-

B R R AR RS R

Duiabuse Sysiem Concepls - 6 Edition ni Silberschatz, Kerth and Sudarshan

So, this is an example of a schedule which is not recoverable. Now let us also observe
that a single transaction failure not only means that one transaction needs to be rolled
back, but it could have a cascading effect, that is a series of transaction may require a

rollback. So, here is an example of T 10 T 11 and T 12. So, T 10 reads A and B and



writes A and then T 11 reads and writes A and T 12 reads A and at that time if T 10 fails
if that aborts, then naturally it is not enough to simply roll back T 10 because, if we roll
back T 10, then we the value of a goes back to the original and T 11 would have a wrong

value which T 10 had written, but has now been undone has now been rolled back.

So, it means that T 11 will also have to be rolled back. Similarly if that is rolled back
then naturally T 12 also have to be rolled back and so on and when this rolling back goes
from one transaction to the other we say this is the cascading roll back. And this can lead

to a significant amount of work.

(Refer Slide Time: 07:15)

Cascadeless Schedules

o,

® Cascadeless schedules — for each pair of transactions T,and T, such that 7, reads a data item
previously written by T, the commit operation of T, appears before the read operation of T,

m Every cascadeless schedule is also recoverable
m |tis desirable to restrict the schedules to those that are cascadeless

m Example of a schedule that is NOT cascadeless

T.'D | TH | TI!

read (A)
read (H)
write (A)
read (4)
write (4)
read (A)
abort

EWAYAM: NFTEL-MOC MOOTs Instrucior: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

B R R RN RS N

Daiabase System Concepts - §* Edition ni Bilberschaiz, Korth and Sudarshan ‘

So, what we would prefer is if we could have schedules where such cascading roll back
is not required. So, and there is a there is a condition through which you can achieve that.
So, if we have a pair of transaction T i and T j. So, that T j reads A data item previously
written by T 1, then the commit operation of T i has to happen before the read operation
of T j which means that said in other words that T j should read only read values which

are already committed and not read intermediate temporary values of other transactions.

So, every cascadable schedule is also recoverable because, you can individually recover
that and it is desirable to restrict schedules to those which are cascade less as far as
possible, we will see that in non not all cases that is possible, but if it is possible you

would like schedules which are cascade less. So, that covered a rollback work the extra



work can be minimized. So, here is an example which we had just seen which is not a

cascadable schedule.

(Refer Slide Time: 08:25)

PRD

]

Recoverable Schedules: Example

B |rrecoverable Schedule

T T1's Buffer T2 T2's Buffer Database

;

! A=5000
d RIA), A=5000 A=5000
3 A=A-1000; A= 4000 A= 5000
H WIA); A=4000 A= 4000
R(A) A=d000  A=4000
g A=A+500, A=4500  A=4000
;: WIA), A=4500 A=4500
g Commit;

§ Failure Peint

E Commit:

:

g ]

Source: hitps:(hwww geeksforgesks orgidbms.recoverabiity.of-
fa il P — nw e Sk |

So, wait for word let us take a couple of examples of very similar transactions and, we

would see when their schedules are irrecoverable, when their cascade dead recovery is
possible cascaded rollback is possible and, when cascade less rollback is possible. So, if
you so, here what I have done is I have shown here the 2 transactions T 1 and T 2. And
this is what transaction T 1 is doing and we assume that in the in the database the initial

value of a is 5000.

So, what will happen is read here and this value is a different A this is in the buffer or the
memory of T 1 transaction, where A becomes 5000, then you subtract 1000 and then you
write back the moment you write back in the database in between the value in the
database is not changing, it is only that value is only in the buffer and, when you write

back the value in the database has changed.

And then transaction T 2 reads that value. So, in its local buffer a becomes 4000 it
increments by 500 and then writes it back and when that happens, then in the database
also the value has changed to 4500 and then T 2 commits and at this point let us assume
that there was if there was a failure. So, this is the point where there was a failure there
were other instructions in T 1 as well which is not of our interest right now, and then T 1

would have committed, but what happens if the failure happens at this point naturally the



T 1 needs to roll back T 1 needs to undo this and set the this value 5000 back into the

database.

But that would mean that what T 2 has committed T 2 has already committed this value
4500 in the database and therefore, that has been probably been used in other places and
shown to the user that will create an inconsistency in the database. So, these are this is a
schedule of T 1 and T 2 which cannot be recovered from. So, let us and so what it has
what has been violated that T 2 has actually read A value which was in transit and, then it

has already committed based on that read value.

(Refer Slide Time: 10:57)

FFD

Recoverable Schedules: Example

B Recoverable Schedule without cascading rollback

10| T1's Buffer T2 T2's Buffer Database
A=5000

R(A); A=5000 A=5000
A=A-1000; A=4000 A=5000
WiA); A= 4000 A= 4000
Commit,
R{A); A=4000 A=4000
A=A+500, A=4500 A=4000
WA, A=4500 A= 4500

Commit,

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagewr. Jan-Apr. 2018

=
. Saurce: filtps.fwww geskslorgeeks ong'dbms-recoverabilty.of-
[ e L ae T

Now, let us look into the next. So, what has been done here that all the changes are the

same, but the only point that we have done is we have changed the point where the
comet happens again still the T 2 is reading the same value in our in a and is making the
updates 4500, but the commit happens at a later point of time after the commit of this

transaction T 1 has taken place.

So, this is recoverable, but if we want to recover T 1 naturally; that means, that for T 1 to
be recovered, I also need to recover T 2 because T 2 is used a value which is not going to
be the value in after the rollback of T 1 has happened T 2 has used 4000, but after the
rollback the value in the database will be back to 5000. So, it is the rollback is required

for T 1 as well as in T 2. So, this is a case of cascaded cascading roll back that has



happened. So, some more work is being done and that has happened because T 2 now

here the rollback is possible because T 2 is committing after T 1.

So, the transaction it is reading from it is actually committing the changes after that
source transaction has committed. So, that satisfies the condition of recoverable
schedule. So, you are able to recover, but it still required the cascading because T 1 had
read A value in here of A which was not yet committed. So, if we would have committed
that, then we would have been able to actually create a schedule which is cascade less as

we see 1n the next slide.

So, now I what the change that has happened is a commit is done, right after writing the
value of A and T 2 reads that only after that commit has happened, earlier it was reading
before that commit has happened. So, once T 2 reads it after this commit. So, if there is
some there is some requirement of if there is some situation of rollback, then only T 1
needs to be rolled back and T 2 does not need to be a rollback because, it has used a

value which is already committed.

So, this is the basic through the example you can clearly see, what is how the rollback
can happen and in a later module, we will discuss the processes of how to do this kind of
rollback the cascading and non cascading both kinds and show how to go ahead with
that, but now for now what we learned is schedules need to be recoverable and,
preferably cascade less rollback recovery schedules are preferred in case of database

transactions.

Now, let us move on and talk little bit about what is available in SQL language in terms

of handling transactions.



(Refer Slide Time: 14:12)

Transaction Definition in SQL

o,

Data manipulation language must include a construct for specifying the set of actions that
comprise a transaction

In 3QL, a transaction begins implicitly
A transaction in SQL ends by:

Commit work commits current transaction and begins a new one
Rollback work causes current transaction to abort

In almost all database systems, by default, every SQL statement also commits implicitly if it
execules successfully

Implicit commit can be turned off by a database directive
For example in JDBC, connection sefAutoeCommit{false);

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

B R RN AR N B R

Daiabise Sysiem Concepds - § Edition 0.4 CBilberschatr, Korih and Sudarshan ‘

So, SQL we have seen the kind of DDL data definition and data manipulation language
paths and those were discussed in terms of our interactive session as well. As a part of
data manipulation it is also possible to specify certain specific transaction events. So, a
transaction in SQL typically begins implicitly and, it ends by a commit work which says
that let us, you commit the current transaction that is make all the changes permanent, in
the database make it visible to the user and begin a new work, or it could roll back the
transaction which means that all the changes that you had done are rolled back and the

transaction basically aborts.

So, in almost all systems by default every SQL statement commits implicitly and, if it
has been able to execute successfully, otherwise it rolls back and this implicit commit
can be controlled also, it can be in different system there are different ways to control
that and say that I do not want implicit commit I would only want commit to be done

explicitly.



(Refer Slide Time: 15:22)

FFD

Transaction Control Language (TCL)

8 The following commands are used to control transactions
COMMIT - fo save the changes
ROLLBACK - fo roll back the changes
SAVEPOINT - creates points within the groups of transactions in which to ROLLBACK
SET TRANSACTION - Places a name on a transaction

m Transactional contral commands are only used with the DML Commands such as
INSERT, UPDATE and DELETE only

They cannot be used while creating tables or dropping them because these operations are
automatically committed in the database

WAYAM: NFTEL-MOC MOOCs Instructoe: Prof. P P Das. IT Kharageur. Jan-Apr, 7018

H ¥ Source: hitg:Ihwww iforialspeint comsalisg-iransaction
Daiabise Sysiem Concepds - § Edition 145 Cfilberschatr, Korih and Sudarshan

So, for that purpose a part of SQL called the transaction control language has different

instructions commit to save the changes roll back to roll back, the changes undo the
changes and also to do some do, it in some controlled way by defining save point and

you can also set the a particular name to a transaction and it is behavior.

So, let us look at examples for doing that soon and these TCL commands are used with
specific DML commands they are meaningful in terms of insert update and delete only
for example, if you are creating a database or you are doing a select to data retrieval, then

these instructions have no role in those transactions.



(Refer Slide Time: 16:09)

FFD

TCL: COMMIT Command

o=,

E_ 5 The COMMIT is the fransactional command used to save changes invoked by a transaction to the database

g B The COMMIT saves all the transactions to the database since the last COMMIT or ROLLBACK command

f 1 The syntax for the COMMIT command is as follows:

% SQL> DELETE FROM Customers WHERE AGE = 25,

% SQL> COMMIT;

E’ SQL= SELECT * FROM Customers; SQL= SELECT * FROM Customers;

E ID NAME AGE ADDRESS SALARY ID NAME AGE ADDRESS SALARY

'; 1 Ramesh 32 Ahmedabad 2000 w 1 Ramesh 32 Ahmedabad 2000

H B 2Knilan 25 Delhi 1500 W 3 kaushik 23 Kota 2000

E- E 3 kaushik 23 Kota 2000 8 sHadk 27 Bhopal 8500

E g 4 Chaitali 25 Mumbai 6500 g 6 Komal 22 MP 4500

% § 5Hardik 27 Bhopal 8500 TMuffy 24 Indore 10000

5 6Komal 22 MP 4500

; 7 Muffy 24 Indore 10000

g Saurce: i o derialspeiit comsal st ransactiondU L TS M TR R B TR R
Databarse System Concepts - * Edition ni Cilberschatz, Korth and Sudarshan

So, commit is a transaction command which is used to save changes and make them
permanent based on what has been invoked. So, here you see the example of a customer
database and, what I am showing is if you this is the initial state of that table and, before
any value has been deleted and if you do select star from customers these 7 records is

what you get to see, in view of that you do a delete and then you commit the delete.

So, we say that I have deleted and make that deletion permanent. So, deleting based on
age. So, this record is supposed to be get deleted and this record is supposed to get
deleted and, after I have done the commit then again if I do the same data retrieval. And
now I get to see 5 records only the 2 record number 2 and record number 4 have been
permanently deleted. So, this is the way you can explicitly do commit and make the

changes permanent.



(Refer Slide Time: 17:11)

FFD

i

TCL: ROLLBACK Command

;'21_ 8 The ROLLBACK is the command used fo undo transactions that have not already been saved to the database
% B This can only be used to undo transactions since the last COMMIT or ROLLBACK command was issued

f B The syntax for a ROLLBACK command is as follows:

g SQL> DELETE FROM Customers WHERE AGE = 25,

§ S0L> ROLLBACK;

E’ 5QL> SELECT * FROM Customers; SQL> SELECT * FROM Customers;

E ID NAME AGE ADDRESS SALARY ID NAME AGE ADDRESS SALARY
§ 1 Ramesh 32 Ahmedabad 2000 1 Ramesh 32 Ahmedabad 2000
3 B 2Knilan 25 Delhi 1500 W 2 Khilan 25 Delhi 1500
g ; 3 kaushik 23 Kota 2000 E 3 kaushik 23 Kota 2000
g g 4 Chaitali 25 Mumbai 6500 g 4 Chaitali 25 Mumbai 6500
% § 5 Hardik 27 Bhopal 8500 E 5 Hardik 27 Bhopal 8500
E 6 Komal 22 MP 4500 6 Komal 22 MP 4500
g 7Muffy 24 Indore 10000 7Muffy 24 Indore 10000,
i

Sauree: hip e liorialspent comisqlisg-rarsaction
g 4 reme s ey

In terms of rollback it is a command which is used to undo transactions that is the

changes that have already not been saved to the database you can roll back.

So, you can roll back or undo transactions only back up in history up to the last commit,
or the last rollback command was issued on this. So, again looking at the same example
this is the initial state and, then you did a delete as we did last time. So, these 2 records
are to be deleted, but then instead of commit we have given a rollback. So, as you give
rollback these deletion operations get undone. So, these 2 records are again back to the
table and so, after the rollback if I again do the select I will get to see the 2 records back

in my list. So, this is the purpose of the rollback command.



(Refer Slide Time: 18:09)

g TCL: SAVEPOINT / ROLLBACK Command

A SAVEPOINT is a point in a fransaction when = Example:
you can roll the transaction back 1o a certain point S0L> SAVEPOINT SP1:
withaut relling back the entire transaction 1

§ t created.
B The syntax for a SAVEPQINT command Is: b
5QL> DELETE FROM Customers WHERE 1D=1,
SAVEPQINT SAVEPOINT_NAME;
; : 1 roiw deleted.
B This command serves only in the creation of a :
SAVEPQINT amang all the transactional SQL> SAVEPOINT SP2;
statements. Savepaint created.
®  The ROLLBACK command is used to undo a SQL> DELETE FROM Customers WHERE 1D=2,
group of transactions 1 row deleted

The syntax for rolling back to a SAVEPQINT is:
ROLLBACK TO SAVEPOINT_NAME;

SQL~> SAVEPQINT SP3;
Savepoint created.

SQL> DELETE FROM Customers WHERE 1D=3;
1 row deleted

EWAYAM: NFTEL-MOC MOGTs Isstruector: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

Souree: hitp:Peeaw itonalspeint. comisqlsgh-iransaction

(3. o Lo e et

Now, you can a transactions often could be long. So, within the transaction you may
want to mark certain points. So, that in case you roll back or you need to roll back, you
can roll back to that particular point and those points are in the transaction are known as
the save point. So, this is the format use a save point and give it a name and, then later on

you can use those save points for your purpose of rollback.

So, you are again if you are doing a rollback, then you instead of just doing rollback, you
now use the save point ID that you had used in naming that particular point up to which
you want to roll back and, do a rollback and that will happen only up to that point. So, let
us look at an example so, here it is a series of instructions in a in a DML transaction. So,
I initially set SP one as a save point that is [ may want to roll back to the beginning,
when I delete one record say ID 1. So, 1 record gets deleted, then I again save another
save point another save point SP 2 this was SP 1 and, then delete a second record another

save point delete another record.

So, now I have a control to undo at this point have a control to undo to 3 points for
example, if I do a rollback 2 SP 3 I will roll back to this point, where only this record
will be deletion of this record will be undone, but the first 2 records will still look show
as deleted, but if I roll back to save point SP 2, then 2 records ID 2 and ID 3 that were
deleted their deletion will be undone and only 1 deletion will look up. Similarly if I roll

back to SP 1, it will show that no deletion as it all happened.



(Refer Slide Time: 20:14)

o,

B Three records deleted

1 Undo the deletion of first two

§ SQL> ROLLBACK TO SP2,
Rollback complete

5QL> SELECT * FROM Customers;

ID NAME AGE ADDRESS SALARY
1 Ramesh 32 Ahmedabad 2000

EWAYAM: NFTEL-MOC MOGTs Instructor: Praf. PP Das. IIT Kharagear. Jan-Apr. 2018

£ 2Knian 25 Delhi 1500
g 3kaushik 23 Keta 2000
2 ychatall 25 Mumbal 6500
% 5Hardik 27 Bhopal 8500
% Skoma  22MP 4500
7Muffy 24 Indore 10000
Ol o - e

records have been deleted and, then I do undo off the first deletion of the first 2 and I roll

back to SP 2.

So, then when I undo the deletion of the last 2 records, then the what I see is the records
which are marked as ID 2 and ID 3, which were done after SP 2 was marked which were
deleted after SP 2 are marked, they are back into the table whereas, the deletion of SP 1
1s still in effect and therefore, deletion that was none after SP 1 that is of record ID 1 is

still missing and in this way you can control and roll back to any specific point in a

database in a database transaction.

S0L> SAVEPQINT 5P1;
50L> DELETE FROM Customers WHERE ID=1;
50L> SAVEPQINT 5PT;
50L> DELETE FROM Customers WHERE ID=2;
50L> SAVEPQINT 5PY;
50L> DELETE FROM Customers WHERE ID=3;

After ROLLBACK

Source: hitg P liorialspein comisqlisg-ransaction

L L]

TCL: SAVEPOINT / ROLLBACK Command

SQL> SELECT * FROM Customers;

ID NAME AGE ADDRESS SALARY

2 Khilan
3 kaushik
4 Chaitali
5 Hardik
6 Komal
7 Muffy

25 Delhi 1500
23 Kota 2000
25 Mumbai 6500
27 Bhapal 8500
2 Mp 4500
24 Indore 10000

FFD

"

So, if I do that on the this is the initial state on the left to the initial state of the database 3



(Refer Slide Time: 21:13)

g TCL: RELEASE SAVEPOINT Command

® The RELEASE SAVEPOQINT command is used to remove a SAVEPQINT that you have created
u The syntax for a RELEASE SAVEPOINT command is as follows.
» RELEASE SAVEPQINT SAVEPOINT_NAME;

® Once a SAVEPQINT has been released, you can no longer use the ROLLBACK command to undo
transactions performed since the last SAVEPQINT

WAYAM: NFTEL-MOC MOOCs Instructoe: Prof. P P Das. IT Kharageur. Jan-Apr., 7018

g g Seuree: hitphww lisoralspoin comislsgh-ransaction
Daiabise Sysiem Concepds - § Edition nn 8ilbwerschaiz, Kerih and Sudarshan

You can once you have marked a safe point you can also, release the safe point that is

you can choose to forget that safe point. Once a safe point has been released you cannot

roll back to that safe point naturally.

(Refer Slide Time: 21:26)

g TCL: SET TRANSACTION Command

8 The SET TRANSACTION command can be used to initiate a database transaction
m This command is used to specify characteristics for the transaction that follows

+ For example, you can specify a transaction o be read only or read write
m The syntax for a SET TRANSACTION command is as follows:

» SET TRANSACTION [ READ WRITE | READ ONLY J;

WAYAM: NFTEL-MOC MOOCs Instructore: Prof. P P Das. IT Kharageur. Jan-Apr., 7018

H i Source: hitp:lhwww iiforialspeint comsqlisg-ransaction
Daiabise Sysiem Concepls - § Edition nH Bilberschatz, Kerth and Sudarshan

You can use set transaction command to initiate a database transaction also and, it is

typically used to specify the characteristics of the transaction, particularly if you want to

say whether a transaction is a read only transaction or a read write transaction, then you



can do it in this way, you can say set transaction and give a read or write flag read or

write or read only flag for that.

Let us quickly take a look at a different form of serializability besides the conflict

serializability is called view serializability.

(Refer Slide Time: 21:59)

View Serializability

o,

B Let Sand ' be two schedules with the same set of transactions. S and 5" are view equivalent if the
fallowing three conditions are met, for each data item Q,

If in schedule S, transaction T, reads the initial value of Q, then in schedule 5’ also fransaction T, must
read the initial value of @

If in schedule 5 transaction T, executes read(Q), and that value was produced by transaction T, (if any),
then in schedule S'also transaction T must read the value of Q that was produced by the same write(Q)
operation of transaction T,

The transaction (if any) that perferms the final write( Q) operation in schedule § must alsa perform the
final write({Q) aperation in schedule 5’

B As can be seen, view equivalence is also based purely on reads and writes alone

WAYAM: NFTEL-MOC MOOCs Instructoe: Prof. P P Das. IT Kharageur. Jan-Apr. 7018

@ I I nl lln m\
Daiaburse Sysiem Concepls - § Edition nn Silbersthaiz, Kerth and Sudarshan

So, in terms of view serializability we again define what is known as when are 2 tran

schedules defined to be view equivalent, earlier you remember we define 2 schedules to
be conflict equivalent, now we are defining view equivalent. So, there are 3 conditions
the conditions are simple what conditions say is a to try a schedules are view equivalent,
if the transaction the initial value that a transaction reads is same in both these schedules,
for every transaction the initial value that it reads must be the same between the 2

schedules.

Similarly, the third condition says that the final write that is done, final value that it
writes every transaction writes in both the schedules must be the same the same rights
should operate. And the second conditions is a read write pair that every transaction
when it performs a read on the data item, it must read from the write corresponding write

in the other schedule in by the same by the transaction that which did the right.

So, I always initialize start with the same initial values for every data item in both

schedules, I always read from the corresponding right in the same schedule in the 2



schedules and, I must write the final in every transaction every data item must be written

in the same way in the 2 schedules.

So, this is again and the key balance is based purely on read write alone as is the case of

conflict equivalence also.

(Refer Slide Time: 23:39)

View Serializability (Cont.)

S

A schedule S is view serializable if it is view equivalent to a serial schedule
Every conflict serializable schedule is also view serializable

Below is a schedule which is view-serializable but not conflict serializable
Ty | T | Ty
read (Q)
write ()

write (Q)
write ()

What serial schedule is above equivalent to?

Tor o T

The one read(Q) instruction reads the initial value of Q in both schedules and

T.; performs the final write of Q in both schedules
Tay and Ty, perfarm write(Q) operations called blind writes, without having performed a read(Q) operation
Every view serializable schedule that is not conflict serializable has blind writes

1

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018
-

B R RN N B R

Duiaburse Sysiem Concepls - § Edition M Silberschatz, Kerth and Sudarshan

So, given the definition of view equivalence, we can say schedule is the view
serializable, if it is view equivalent to a serial schedule earlier which said that a schedule
is conflict serializable, if it is conflict equivalent to a serial schedule. Now we are
defining the view serializability, with a little bit of thought you can convince yourself
that every conflict serializable schedule is also view serializable, but the reverse is not

true.

So, here is a schedule which is view serializable, but it is not conflict serializable, you
know this is not conflict serializable because, certainly you cannot make it into a serial
schedule make it equivalent to a serial schedule because, you cannot move this right Q
above the right Q of T 28 or of T 29, but you cannot move this either. So, given that but
if you in terms of the view equivalence we balance, then you will say that this is
equivalent to a serial schedule and what should be the serial schedule; obviously, there

are 6 choices because there are 3 schedules.



So, there are 6 possible permutations which give you 6 different serial schedules and if in
that so our first condition says that I must read from the same value so; obviously, T 27
reads the initial value of Q. So, T 27 has to be the first transaction, if the third condition
says that I must do the same right T 29 does the final right here. So, the in the serial
schedule also T 29 must be the last 1. So, T 28 has to be the middle 1.

So, the serial schedule that this is equivalent to is T 27 T 28 T 29 and, the 1 reads and the
other 2 rights and T 29 performs a final right. So, you can see that this is a this is not a
conflict serializable, but this is view serializable and if you note the view serializability
moment, you have you view serializability and you may not have conflict serializability,
then you must be having certain blind rights, these are called blind rights this is a blind
right, in the sense that here you are writing the value of Q in T 28 without having read it
is current or previous value. So, you have just blindly you had just computed some value

and you are writing to that.

So, if a schedule is not conflict serializable, but is view serializable it must have
performed some blind rights where it has written data without actually reading it. So, this

is a weaker form of serializability that is possible.

(Refer Slide Time: 26:20)

ﬂ Test for View Serializability

da,

The precedence graph test for conflict serializability cannot be used directly to test for view serializability
Extension to test for view serializability has cost exponential in the size of the precedence graph

The problem of checking if a schedule is view serializable falls in the class of NP-complete problems
Thus, existence of an efficient algorithm is exfremely unlikely

8 However, practical algorithms that just check seme sufficient conditions for view serializability can still be
used

EWAYAM: NFTEL-MOC MOGTs Isstructor: Frof. P P Das. IIT Kharagear. Jan-Apr. 2018

B RR N AR N RSN

Daiabiuse Sysiem Concepds - § Edition B E8ilberschatr, Korih and Sudarshan ‘

Now the question is similar to conflict serializability, where we saw that it schedule can

be conflict serializable, if it is corresponding precedence graph is a cyclic. So, we would



like to extend find out similar test for view serializability, but as it turns out that trying to

find out this is exponential in cost in terms of the size of the precedence graph.

So, it has been proved that the of checking, whether a schedule is view serializable is in
the class of NP complete problem. So, if you are good in algorithms. So, you will know
what NP problems are and when are problems called NP complete, in very simple terms
even if you are not familiar with that depth of algorithms, you can simply issue note that
if an algorithm is NP complete, then it is extremely unlikely that there exists in efficient

algorithm for.

It there exists any kind of polynomial time algorithm, it is extremely unlikely still not it
is still an open problem in computer science, whether a tall polynomial algorithm exists
for NP complete problems, but it is extremely unlikely that an efficient algorithm will
exist, you may have some approximate algorithms which can give sufficiency conditions
which can say that well if these conditions are satisfied, then necessarily a schedule is
view serializable, but not a sufficient condition are not a necessary condition, that is in
other words that there may be some schedules which do not satisfy the sufficient

condition, but are still view serializable.

(Refer Slide Time: 27:59)

E View Serializability: Example 1

e

& Check whether the schedule is view serializable or not?
S R2(B); R2(A), R1(A), RI(A) W1(B), W2(B), Wa(B)
®  Solution
With 3 transactions, total number of schedules possible = 3| = 6
sTIT2T3=
<T1TaTZ=
T2T3Ti=
<T2T1 T3>
TITI T
<TAT2TI=
Final update on data items
A
B:TIT2T3
Since the final update on B s made Ily T3, g0 fhe transaciion T3 must execute after iransactons T1 and T2
Theselone, (T1,72) = T3, Now, Remaving (hose schedules in which T3 is nol exesuling al last
<T1T2T3
<T2T1T3>

EWAYAM: NFTEL-MOC MOGTs Instrucior: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

B R RS- EE N e ]

Sourew: apheaw edugraks, comhow-o-check-lorview-seriakzabl
Daiabase System Concepts - §* Edition nn Silberschatz, Kerth and Sudarshan

So, using view serializability have certain problems. So, here I have worked out a longer
problem in terms of the view serializability to check that. So, it is kind of a brute force

algorithm. So, if you see this is the schedule given there are 2 data items A and B and



there are 3 transactions T 1 T 2 T 3. Since there are 3 transactions, then if I want to prove
if it is view serializable, then what I will have to do I will have to find a one of the

possible serial schedules which is view equivalent to this?

So, first I list out all the serial schedules given 3 transactions, there are 6 serial schedules
and then I first start with condition 3 which is who is doing the last update. So, there are
rights are only on B. So, and last of that are being done in all the 3 transactions. So, there
is no write on A so, the list of final update on A is empty and for B the orderis T1 T2 T
3 so, T 3 does the last.

So, it must whatever schedule this whatever serial schedule this given schedule S has to
be view equivalent to must have T 3 as the last transaction to execute. So, only these 2

are the candidates which may be view equivalent to this schedule S.

(Refer Slide Time: 29:35)

g View Serializability: Example 1

®  Check whether the schedule is view serializable or not?
S R2(B); R2(A); R1(A) R3(A), W1(B); W2(B), W3(B)
®  Solution
Inifial Read + Which transaction updates after read?
A T2 T1 T3 (initial read)
B T2 (initial read); T1 {update afer read)
The transaction T2 reads B inially which is updated by T1. So T2 must execute before T1
Hence, T2 — T1. Removing those schedules in which T2 is executing before T1
T2TITi=
‘Write Read Sequence (WR)
Mo need fo check here
Hence, view equivalent serial schedule is
TR=TI-T3

g SWAYAM: NFTEL-MOC MOOCs lnstructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

P
§
i

Soures: b www eduarabs comhios-io-sheck-lervdew-seriakzabl

¥ et

So, we reduce down and now we have only to decide whether these 2 any of these 2 are
view equivalent to the given schedule S. So, moving on with that now next we check

condition 1 and condition 2 together.

So, condition one checks that they must read the same value in both the schedule. So, we
see that these are the reads that are happening on A. So, we see that on a there are reads
happening, I am sorry this is these are the 3 that is reading A. So, it happens in the order
of T2T3T1and T 3.



So, this is what you find and in terms of B we find that transaction 2 reads B and writes
it. So, it has to be in that order. So, it reads it does an initial read in terms of T 2 and, then
the first right of that read value is happening in the transaction T 1 after the update of the

read.

So, that means, that whatever schedule we look for in terms of view equivalence, they
must have in that schedule T 1 must follow T 2. So, T 2 must happen first because it
needs to read the initial value and, then that initial value is used by then there is a right
on by T 1. So, T 2 has to come before T 1 so; that means, we are already in terms of only

2 we have seen that there are 2 possible candidates based on condition 3,itis TT 1 T 3.

So, in these 2 we only can have this one which is satisfying the other conditions and
there is no read write sequence. So, we conclude that indeed T2 T 1 T 3 satisfies all the 3
conditions of initial read write after read and the final right conditions and therefore, this
given schedule S is actually view equivalent to a serial schedule and, it is a view serial

schedule and can be used safely for the transaction.

(Refer Slide Time: 31:45)

FRD

View Serializability: Example 2

=

®  Check whether the schedule is Conflict senalizable and view serializable or not?
S RA) R2(AY, RYA) RAAY W1(B), W2(B); W3(B), W4(B)
®  Solution is given in the next slide (hidden). First try to solve it and then check the solution

SWAYAM: NPFTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

‘FR et D

SOUTEE. PIg ey BUGALS EOUNGA-I0-Ehack-Ior-viw-Seriakzabl
nn

Dalabisié Systems Concpts -6 Edition eSilbeeichats, Koth ind Sudarshan |

There is another example given here, where there is there are 4 transactions R one R 2 R
3 and R 4 and there are 2 data items A and B and, you have to find out establish whether
this is view serializable or not, I am not working out this one this is worked out in the

presentation slide, but I will not show it here you are you should first try it out and, then



once you have been able to do it or you are unable to do that, then you check the solution

from the presentation slide.

(Refer Slide Time: 32:26)

More Complex Notions of Serializability

f—

B The schedule below produces the same outcome as the serial schedule < T, T, >, yet is not canflict
equivalent or view equivalent o it

read (A)

A=A=50
write (A)
read ()

B=B-10
write(B)
read (B)

B=B+3)
write (B)
read (A)

write {4}

If we start with A = 1000 and B = 2000, the final result is 960 and 2040
Determining such equivalence requires analysis of operations other than read and write

SWAYAM: NPTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018
-

Dutabixsé System Concepts - 6% Edition ny Silbérschats, Koth shd Sudarihan

There are different other complex motions of serializability also for example, if you look
at this particular schedule this actually is a serializable schedule, this is the effect that it
produces will be same as the serial schedule of T 1 T 5, but if you go through the
definitions of conflict equivalence and, view equivalence you will be able to show that
this schedule is neither conflict conflict serializable not view serializable, but yet given

the particular.

So, if you just look at the read write this is not a serializable schedule in terms of conflict
or view equivalence, but given the fact that it actually performs simple add subtract
operations on these variables, using the properties of add subtract operations you would
be able to you can actually see that this particular schedule actually is a serializable
schedule and, you will get whatever initial values you start with the value that you will
achieve through this schedule and the value that will achieve with the serial schedule T 1

T 5 are indeed same in every case.

But this is determining this requires the understanding of other instructions other
operations, besides the read and write. So, this is just to show you that using the read

write model and conflict and view equivalents and the only not the only ways of getting



to serializability there are more complex models, but we will not go into the depth of

these complex serializability aspect.

(Refer Slide Time: 33:56)

Module Summary

=

® With proper planning, a database can be recovered back to a consistent state from inconsistent
slate in the face of system failures. Such a recovery is done via cascaded or cascadeless rollback

® View Senializability is a weaker serializability system for better concurrency. However, testing for
view serializability is NP complete

WAYAM: NPTEL-MOC MOOCS Iestructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 3018

@ ‘ m
Databixsé System Concepts - 6 Edition nn CSilbérachatr, Korth shd Sudarshan

So, we have shown that with we have shown here that with proper planning, a database

can be recovered back to a consistent state from an inconsistent state, in case of system

failure.

And this such a recovery can be through cascaded or cascade lists rollback and, we have
also introduced a simpler model of serializability in terms of the view serializable, but
testing for view celerity is MD complete. So, as an effective algorithm it is not that

powerful.



