
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 34
Concurrency Control /1

Welcome to module 34 of Database Management Systems, in this module and the next

we will talk about Concurrency Control a very key concept of database transactions.

(Refer Slide Time: 00:28)

So, in the last module we have talked about continuing on the transactions, we had talked

about recoverability of databases, how to satisfy the acid properties the basic transaction

in SQL and we have introduced a second form of serializability in terms of the view

serializability.

(Refer Slide Time: 00:44)

Now, here in this we will talk more on the different aspects of concurrency control

because, it is good that if 2 schedules are given, we can we may try to prove if there

conflict serializable, if their view serializable and then we can use them, but doing that in

general while the database is in execution is an extremely difficult problem because, who

is going to give the who is who will be able to give the all possible different types of

transactions that may happen 100s of them that may be going on in a in the database at

any given point of time.

So, how do you prove that or how do you know whether they are conflicts serial, or

which of them conflict serializable sets are of view serializable sets and so, on. So, we

introduce a different kind of need to have a different kind of mechanism and that is the

mechanism of lock that is used.

(Refer Slide Time: 01:40)

So, we will discuss about those aspects issues and the lock based mechanisms.

(Refer Slide Time: 01:45)

So, a database must provide a mechanism that will ensure all possible schedules are both

conflict serializable, that is a basic requirement and are recoverable and preferable in a

cascade less manner. So, that is the basic requirements that we have seen.

Naturally if we have everything as serial that will happen by default, but that will have

very poor degree of concurrency and very low throughput. So, concurrency control

schemes will trade off the amount of concurrency that is allowed and, the amount of over

it. So, what will I have to be ensured is I should able to for example, if I say that the the

schedules are always serial then the overhead of ensuring concurrency is the minimum,

but naturally the benefit is also minimum, we get a very poor throughput.

The more we would like to allow for more and more concurrence in the system, but at

the same time we will need to have to see what is the overhead of that what is the cost of

that what how do we have to ensure those and, naturally as we I have already said testing

for a scheduled to be serializable after it has happened is; obviously, too late and the

question is beforehand how do I get to know it in a general setting.

So, we need to have a certain protocol through which that, transactions might be written,

a protocol through which the transactions must operate so, that we can achieve good

concurrency in the system. So, here our objective is to develop concurrency control

protocols that will ensure serializability and if possible cascadeless recovery.

(Refer Slide Time: 03:28)

So, naturally what you do you try to see whenever we have conflict, the basic problem of

serializability is conflict that is what are you are you reading the right data and, what

happens if you inadvertently make changes in a data that has already been read by

someone else and so on. So, the why we need to achieve isolation of the transactions

would be to make the accesses as mutually exclusive as possible.

So, naturally 1 way it could be to do it using locks. So, we by the basic concept of the

lock is you say that this data item is in use. So, others should not use it. Now what should

be the data item, should it be the whole database, it can be the whole database we say

this database is in use other transaction cannot use it, which boils down to saying almost

that you have a serial schedule.

So, at any point of time only one transaction can operate on the database naturally your

concurrency will be very poor. So, that is not what is what is acceptable. So, we need

locking mechanisms, or a mechanism to control exclusivity in terms of holding locks on

smaller items possibly at a record level at a value level and so on. So, that gives rise to a

whole lot of lock based protocol some of which we are going to discuss.

(Refer Slide Time: 04:53)

So, lock is a mechanism to control concurrent access and to start with there are a variety

of locks that exist in a database system variety of types, but to start with we are talking

about 2 locking modes 1 is exclusive mode, which is designated as X and other is shared

mode and which is designated as S.

Naturally the exclusive in the exclusive mode, the data item can be read and written both

and such a lock is obtained by doing it lock X instruction and in the shared mode the data

item can only be read. So, as you can understand why is it exclusive, when you do read

write because if 2 transactions try to write the same item at the same time, then you do

not know what is who has been successful and who is the last right and what is the actual

final value they will become indeterminate.

But if I have a value and multiple transactions read that at the same time certainly there

is no problem because, all of them necessarily will read the same data. So, that is what is

called shared and a shared lock or a shared mode lock can be obtained in terms of the

lock X instruction. And transaction when it has a lock it can unlock that by an unlock on

the same data item.

So, there is a concurrency control manager to whom the lock requests are made, whether

it is a request to grant, or it is a request to release and a transaction can proceed only after

the request has been granted.

(Refer Slide Time: 06:26)

So, let us look into finer details this is what is known as a lock compatibility matrix. So,

if there are multiple lock modes which is what is expected, then you try to see which

locks can be held or operated simultaneously.

So, this is shown in terms of our present assumption that has shared an exclusive lock

naturally, it transact 2 transactions can hold a shared lock simultaneously on the same

data item, but all other combinations that is no 2 transactions can hold a shared and an

exclusive, or 2 exclusive locks on the same data item at the same time. So, which means

that 2 transactions can read a value at the same time, but 2 transactions cannot one is

reading the value and other is writing, the value is not possible the reverse is also not

possible and 2 transactions writing, the value is not possible those are called said to be

the incompatible modes of loss.

So, if the transaction is granted a log, if it is compatible with the lock that is already held

by another transaction, you cannot get an incompatible lock granted to you. And any

number of transactions certainly can hold the shared lock and an item, but if any

transaction wants to have an exclusive lock on the item, then no other transaction may

hold any lock on that item. So, if I want to write that as a transaction I must be the only

transaction who is who has to have that exclusive lock I must be the only transaction

who is trying to write, but when I want to read many transactions can simultaneously

read.

So, if a lock cannot be granted that if I want a lock either a shared lock, or an exclusive

lock and if it cannot be granted, then the transaction has to wait till the all incompatible

locks have been released and, only then this lock can be requested lock in being granted.

And certainly a transaction who is holding a lock on a data item can unlock it at some

point, after it is purpose of accessing the data item is over and, a transaction must hold a

lock on the data item as long as it is accessing the item that is the basic protocol.

So, you must request first get a grant of that lock do the operations that you want and

then you unlock, this is a basic process that has to happen, usually it is said that as soon

as you are done with the operations of the data item you mean unlock that, you may want

to wait for a little longer for the ensuring the serializability these details we will see

subsequently.

(Refer Slide Time: 09:14)

So, let us come to an example. So, here are 2 transactions T 1 and T 2. So, this is a the 2

transactions T 1, T 2 the transaction T 1 does this operation it transfers 50 dollar from

account B to account A.

So, it debits B here credits A here. So, it transfers and transaction T 2 displays the total

sum of money in the accounts A and B. So, it reads A reads B displays and say initially

the transaction initially let us say these accounts have values 100 and 200. So, what this

transaction will do it needs to do the transfer. So, it needs to read B debit and write and

what it has to do since it has to read it must have A shared lock. Since it has to write it

must have a exclusive lock and, if it has got an exclusive lock it will also be able to read

that data. So, what it does it performs an exclusive lock.

So, it requests for an exclusive lock and only on getting that it can do this and, when this

is over the purpose is over it unlocks B. Similarly to update a it takes an exclusive lock

on a updates and, then releases a lock. Transaction T 2 what it does it has to read and

display. So, it does not need an exclusive lock it takes the shared lock reads and unlocks,

it again takes a shared lock on B reads and unlocks and finally, displays the 2 data.

Now, if these transactions are executed serially that is T 1 after T 2 or T 2 after T 1, then

the transaction T 2 will always display the value 300 because, 300s is the initial value

that we will be able to see if T 2 runs first and T 1 300 is all so, the final value because

only 50 dollar has been transferred from B to A. So, the sum remains same. So, you will

be able to see that if T 2 runs after T 1. So, the consistency of the database is maintained.

(Refer Slide Time: 11:32)

Now, let us see let us consider a schedule written here as schedule 1 and the the

transactions are executing concurrently. So, then this is a possible schedule and let us see

what will happen. So, what it does this is where the lock exclusive lock on B is held and

B is updated, then A is read then B is read display is done and then this update on a has

happened. And this is where we are showing that how the grants are happening.

So, as the lock is requested then the request goes to the system that a exclusive lock on B

is requested by transaction T 1. So, that subsequently gets granted and only when the

grant has happened the corresponding axis can start, but it can be any indeterminate

amount of time between the request of the lock which is here and, the actual grant of the

lock, but this operation can happen only after the grant has happened.

So, in every case that is what has to be observed right. Now what happens in this

schedule what will be the consequence. So, in this schedule if we look at the transaction

T 2 will display only 250 dollar, it will not display 300 dollar why because, if you if you

look at this carefully, if you look at this carefully this is where B has got updated. So, B

has become 50 dollar less. And then the whole of A and B have been read and displayed.

So, naturally the total sum is 50 dollar less.

So, even though we have used a lock it has not been able to achieve the required even

though, we have used the lock we have not been able to achieve the required

serializability. And it is possible to create a schedule where inconsistent data is getting

generated T 2 is actually reading an inconsistent data. So, you have seen inconsistent

state in terms of here. Why did it happen? This happened because if we look carefully

this has happened because, T 1 has unlocked to prematurely T 1 has unlocked as soon as

the update to be was over.

So, it was possible for T 2 to read that value of B which is not what is desirable and we

will see that we might want to delay the unlocking till the end, let us see what happens if

we do that.

(Refer Slide Time: 14:43)

So, we are here now it is the same transaction in terms of the notion, but T 1 has been

made to T 3 here, where you have seen that unlocking is been pushed to the end T 2 has

been made into T 4, where the unlocking is pushed to the end. And now naturally if you

look into this, if you wanted to do a schedule 1 you cannot do this kind of a schedule 1

that schedule will not be permissible because, you will not be able to get the locks, T 4

will not be able to get the locks that T 2 could get in the sequence of reads and writes in

schedule 1 is no longer possible.

(Refer Slide Time: 15:52)

So, whatever way we actually do the schedule T 4 will always correctly show, that the

sum is three hundred dollar. So, here we are again showing T 3 T 4 this is a schedule

given schedule 2, which is just given partially. And since T 3 is holding an exclusive lock

on B and T 4 is requesting a shared lock. So, if I hold it this is T 3 is holding an exclusive

lock and T 4 is requesting for a shared lock.

So, T 4 has to wait for T 3 to unlock B before it can actually do that operation. Similarly

you will find if you look further T 4 has already got a shared lock to read A. And T 3

needs a shared lock on I am sorry T 3 needs an exclusive lock on A to be able to proceed.

So, this 1 is here. So, T 4 cannot go beyond this point because T 3 has the lock on B and,

1 is this T 3 cannot go beyond this point because T 4 has that shared lock.

So, what we situation are we getting into. So, we are getting into a situation where,

neither of T 3 or T 4 can actually proceed the normal execution, T 3 is waiting for

exclusive lock on A and which T 4 has and T 4 is waiting for the shared lock on B, which

T 3 already holds as an exclusive manner. And this in so, this is kind this is what is called

deadlock, if you have a studied operating system, then you have must be knowing

deadlock very well, and there the deadlock happens 2 different other issues of sharing

resources here it is because of the lock.

So, moment you use locks there is a possible danger of having deadlock. And once you

have a deadlock there is no other way than to unroll 1 or more of the transaction, then

start all over again, it has to roll back 1 of the 2 transactions to be able to proceed. AHnd

once the transactions are rolled back the data items that were locked by the transactions

will also be unlocked. So, please understand this in view of the earlier discussion we had

in terms of transact TCL commands.

So, when you actually which we are roll back we had at that point could only say that

your value of the data item in the database will be rolled back, but certainly as now you

can understand that, if you roll back also the locks that you have required we also get

unlocked so, that other transactions can get those locks and proceed. So, then the data

items become available for other transactions and, that can continue the execution.

(Refer Slide Time: 19:03)

So, if we do not so, so we are saying that we wanted to use locks to get better control on

the serializability and so on. And it was partly possible, but then we are getting into

different other kinds of different problems.

So, if you do not use locking or, if we unlock data items very early then after reading, or

writing them then we may get inconsistent state this is what you have seen, on the other

hand, if we do not unlock a data item before requesting a lock on another data item that

is if we hold it on for a very long time, then deadlock may occur. So, if we do it too soon

we do not use the lock that we have a problem of inconsistent state, if we do it hold it for

too long then there could be problem of deadlock.

Now, deadlocks are necessarily evil of locking, if you do locking you will always face a

deadlock, if we want to avoid inconsistent states. Now between these two; obviously, we

would prefer deadlock the reason, we will prefer deadlock to inconsistent state is the fact

that, if we have deadlock we still have the option of rolling back and we can take

different strategies to decide what to rollback and how much to rollback and so on

whereas, inconsistent states may lead to real world problems that cannot be handled by

the database system.

In fact, in some in many cases I may get into some inconsistent state which is very

difficult to even recognize that it is an inconsistent state. So, we will continue and prefer

deadlocks over inconsistent states and, we will define we will try to define different

locking protocols a set of rules that the transactions should follow, while the request and

release locks to make our life relatively easier.

So, locking protocols necessarily will restrict the set of possible schedules because, we

will put in some discipline in terms of how we look and how we release them, and the set

of all such schedules is a proper subset of possible serializable schedules that is easy to

understand. And we will present locking protocols that allow only conflict serializable

schedule which ensures isolation.

(Refer Slide Time: 21:23)

So, let us look at the most widely used protocol this is called the 2 phase locking

protocol which guarantees conflict serializability, it does a simple thing it has 2 phases a

growing phase, where it transaction may obtain locks and may not release any lock. And

a shrinking phase which the transaction may release locks and may not obtain any law.

So, you are just separating out the you know the grant or the access of locks holding of

locks and the releasing of locks into 2 different phases you do not mix them up.

And that is the 2 phrases phases of the locking protocol. And this ensures so, we are we

will not do the proof, but you can look it up in the book or, but you can see through

examples that it can be shown that transactions can be serialized in the order of the

points where they do the locking. So, these are known as lock points and, that is where

the transaction actually acquired it is final block.

(Refer Slide Time: 22:25)

So, there can be conflict serializable schedules that cannot be obtained, if 2 phase

locking is used. So, what this is saying if you use 2 phase locking you are guaranteed to

have conflict serializable schedule, but there are conflicts serializable schedules for

which you may not be able to honor the 2 phase locking protocol. So, 2 phase locking

protocol is kind of a sufficiency condition.

(Refer Slide Time: 22:50)

So, you could also in refine the 2 phase locking with what is known as lock conversion

that is you can acquire in the in the growing phase, or the first phase you can acquire a

exclusive lock, a shared lock, or you can convert a shared lock that you already have into

an exclusive lock which is called the lock upgrade process.

Similarly, in the shrinking phase you can release a shared lock release an exclusive lock,

or you are holding an exclusive lock you can make it a shared lock. So, you can

download. So, you can understand that upgrade and downgrade are strategies to only use

that much of restriction that you need, to impose on others and to allow others to access

the data to the based possible way. This protocol again issuers serializability and the it

certainly depends on the programmer as to how the programmer inserts the various

locking instructions.

(Refer Slide Time: 23:46)

Now, you will have to when you want to do read or write, you may acquire locks

automatically the database systems will allow that. So, this is a very simple algorithm.

So, if you want to read a data, I if you have a lock already on that either shared, or

exclusive you can simply read it, if you do not have that then if you may have to wait

until no other transaction has an exclusive lock on that because, you know that read or

shared lock is not compatible with the exclusive lock.

So, you may have to wait till all are the in no other transaction the transaction that was

having exclusive lock possibly has released it and, then take a grant of the shared lock on

this item and, then read it is a very simple algorithm to automatically acquire locks.

(Refer Slide Time: 24:37)

Write is little bit more complex because to be able to write either, you already have an

exclusive lock on D, then you write or you may have to wait till no other transaction has

any log because, exclusive lock is not compatible with shared lock or with other

exclusive lock.

So, as long as some transaction has a lock on D you cannot proceed, but once you come

to a state, that you already if no other transaction has a lock, then you see whether you

yourself have a shared lock on D, if you have a shared lock then you upgrade it to an

exclusive lock, if you do not have a shared lock, then you they take a grant of the

exclusive lock and then you can go and write. So, it is if you follow the 2 phases these

algorithms become very simple. And when you commit or the abort the transaction, then

naturally all locks are get will get released.

(Refer Slide Time: 25:32)

So, the 2 phase protocol we have already seen that does not ensure freedom from

deadlock, you can may follow 2 phase locking protocol here is an example, but you may

still have schedules which will have deadlocks. So, this is one example you can just

convince yourself.

(Refer Slide Time: 25:52)

There is another problem that can happen, in addition to deadlock this is a code there is a

possibility of what is known as starvation; starvation, occurs usually it occurs when the

control concurrency control manager is not a efficient 1.

So, what did we see in terms of automatic locks in read and write operation is you may

have to wait because, someone else is holding a lock on an item. Now holding an

exclusive lock on the item, now it is possible that like the current transaction there may

be couple of other transactions who are also waiting for a lock on that item and, when the

opportunity comes that there is no log being held by any transaction, one of the waiting

transactions must be given the lock you cannot if it is an exclusive lock you cannot give

it to more than 1 transaction, but say 3 transactions were waiting for the exclusive lock

and one of them get, that and that transaction can proceed the other transactions have to

rollback because, they are not getting the lock.

So, now you again start you again come to the point where you wanted the exclusive

lock on that item and at that time somebody is holding it and there are other transactions

who are also requesting for exclusive lock. And when you come back and when finally,

the exclusive lock is released by all other transactions, then again it is possible that while

you are waiting some other transaction that was waiting who gets that exclusive lock and

you do not get that so, you roll back and this could repeatedly could keep on happening.

So, if you have a weak strategy in terms of concurrency control, you have you will see

that you have had infinite possibilities infinite occurrences, where you could have got

that exclusive lock, but you are not being able to get that and therefore, you starve on the

data and this is known as a tower starvation problem which will also have to be checked

while we do the concurrency control policies.

(Refer Slide Time: 27:57)

There is a the potential for deadlock exists in most locking protocols, as we have seen

and when a deadlock occurs there is a possibility of cascading roll back because, when it

deadlock happens then naturally you will have to roll back. So, you may have to do a

cascading roll back as this example is showing. And it is possible for a 2 phase locking

protocol have we have in the example is shown here, where all the transactions are

following cascading roll back has to as following 2 phase locking protocol, but if T 5

fails after the read step of T 7 after the read step of T 7, if T 5 fails then it leads to a

cascading rollback T 7 T 5 has to be rolled back. So, T 6 will have to be rolled back, so T

7 will have to be rolled back and so on. ah

(Refer Slide Time: 28:54)

Interestingly there are several other protocols and particularly 2 more 2 phase locking

protocol 1 is called strict 2 phase locking, which avoids cascading roll back, where a

transaction must hold all exclusive locks till it finally, commits and aborts naturally you

can figure out that you are making the time for the transaction to hold lock longer. So,

naturally the level of concurrency will go down that is all possible serializable schedules

will be smaller, but this guarantees that you will not have a cascading roll back. And

there is an even stricter rigorous 2 phase locking where all locks are held till commit or

abort.

In the strict 1 only exclusive locks are held till commit or abort there is a till the end of

that transaction, but in rigorous 2 phase locking all locks are held till the committed

abort, in this protocol transaction can be serialized, in the order in which they do the

commit and in that way this is a serializable protocol, which also avoids the cascading

roll back up. Now finally, before you close this module a quick word in terms of how do

you implement locking.

(Refer Slide Time: 30:09)

It is the lock there is a lock manager, which implements the locking the lock manager

itself runs on a different process to which every transactions end lock and unlock

requests. And the lock manager maintains a data structure to maintain what are the

transactions, who are holding different locks on different items and based on that the

grant messages are queued on that data structure and, these messages actually release the

locks and, otherwise the transaction has to wait the lock manager maintains this as a lock

table. And this is typically a in memory hash table because, it needs to naturally be very

fast and is in the name of the data item being locked.

(Refer Slide Time: 31:01)

So, let us just show you and so, these are the different this is an instance of a lock table

and, the nodes are different data items. So, I 7, I 9, 12, I 4, I 44, I 23 are different data

items this is a hash table. So, you can see that on I 7 and I 23 there is a collision and

there is collate state chain happening on that. And then for every item you have you

maintain a list of locks that are granted to different transactions and the list of requests

that are waiting, the dark blue here shows the grant and the light blue shows a waiting

status here.

So, it takes it naturally says what type of lock o'clock is granted and requested and based

on this therefore, when you get a request to put it in the you come and put it you hash it

to that data item, put that request on that queue and based on the current status you can

decide, whether it can be granted or it has to wait. So, it is added new requests are added

at the end of that queue, it is first in first out and whenever a release happens, then

naturally a granted node is removed and a waiting node might get a chance to block that

item, if the transaction reports all waiting, or granted requests of the transactions

certainly will get deleted ok.

(Refer Slide Time: 32:30)

So, this is a simple way to manage the locks. So, in this module on concurrency control

we have understood the basic locking mechanism and protocols, we have specifically

looked at the lock compatibility matrix and the strategies of granting and releasing locks

and, we have seen the consequent danger of having deadlock and in some cases

starvation, which we have agreed to live with. So, if deadlock happens we will have to

roll back one or more transactions and then restart again and, but we cannot take the risk

of not having serializable transactions because, that might lead to inconsistent state of the

database which is not acceptable.

