
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 35
Concurrency Control/2

Welcome to module 35 of Database Management  Systems.  We have been discussing

about concurrency control, this is a second and concluding module on that.

(Refer Slide Time: 00:29)

So, in the last module, we have talked about the basic issues in concurrency control; and

particularly  talked  about  log  based  protocol  and  how to  implement  locking  in  very

simple terms.



(Refer Slide Time: 00:39)

As we have seen that deadlocks of the perils of locking I mean we cannot do without

locking and certainly if we lock then deadlocks are inevitable almost to happen. So, here

first we try to understand how since dead locks are inevitable. 

So, there has to be mechanisms to detect deadlocks and recover from them. And also we

would like to look at if it is possible to create strategies which can prevent deadlock from

happening at all. And so after having studied that we would like to understand take a

look into a simple time-based protocol that can avoid deadlock.

(Refer Slide Time: 01:27)



So, deadlock handling.  So, system is  deadlock if  there is  the again just  to recap the

simple idea is if there is a set of instructions such that every transaction in the set is

waiting  for  another  transaction  in  the  set  and  therefore  none  of  them  can  actually

proceed. So, deadlock prevention protocol ensures that the system will never enter into

the deadlock state. 

So, the question is can we make some strategy. So, why are we getting into the deadlock,

because transactions are making requests for different locks and those are granted. And

then some more requests come and we come to a state where a is waiting for b, b is

waiting for c, c is waiting for a kind of a situation and we get into a deadlock.

So, can we have strategies so that the requests and releases are done in a way, so that the

deadlock will not happen at all. So, I mean fortunately such number of such strategies

exist. For example, one strategy which is called a predeclaration which required that each

transaction locks all debt items before it begins its execution that can be shown that that

ensures that you will never have deadlock because where in very simple terms you will

not be able to start before you have got all the locks. 

And once you have got all the locks naturally you have every access to all possible data

items and therefore, you will be able to proceed. Naturally, the flip side of this is this will

delay the beginning of the transactions to a great extent in many cases, and particularly

will bring down the level of concurrency that you can have.

The other which is smarter is what it does is imposes a kind of partial ordering of all the

data items that a transaction and all the data items that exist. And it requires that the

transaction can lock the items in only in that specific order. So, the important thing here

is a partial order among the data items. 

And the fact that you locked data items in that order that is specified by the partial order,

you cannot  lock out  of order. And if  you can do that  then it  can be shown that  the

deadlock will get prevented. We cannot we do not have time to go into the details of how

that works, but I just want you to know that such strategies of prevention exist.



(Refer Slide Time: 03:47)

So, the other possible prevention schemes that we will we would like to look at little bit

more  depth  is  the  fact  that  I  can  use  timestamps  for  the  transaction.  And use  those

timestamps that is which will tell me which is an earlier transaction in which, a later

transaction for preventing deadlock and several strategies for that exist. We will discuss

two  of  them.  First  is  what  is  known  as  wait  and  die  with  scheme,  which  is  non-

preemptive. Non-preemptive means that well in this no one preempts anyone else.

So, what do you do in wait and die, the older transactions because you assume that every

transaction has a timestamp. So, smaller the timestamp, older is a transaction. So, older

transaction may wait for the younger one to release the item. So, if two transactions are

conflicting then the older one will wait; and the younger transaction will never wait for

the older one, they are rolled back instead. 

So, if there is a conflict, then the younger one in that will always roll back, and the older

one will wait. So, a transaction may die several times before acquiring the needed data

item kind of starvation may happen, but certainly there will not be a deadlock. Because

my a waiting on b, and b waiting on a, cannot happen because out of a and b one must be

older has to be older, and that only will wait, the other one will abort, abort and roll back

on.



The other is a preemptive scheme where which is called wound and wait scheme, where

the older transaction wounds up or forces a rollback of the younger transaction instead of

waiting for it that is why this is preemptive. So, the older transaction is preempting the

young that transaction to continue to wait and forces it to roll back to abort and that, but

the younger transaction may wait for the older one. 

So, by doing this preemptive one also it is possible to have a fewer roll backs than the

other scheme. So, it is a preemptive scheme, but it the advantages it might allow you

fewer roll backs to happen. And with these two kind of timestamp based schemes it is

possible to actually prevent deadlocks and for that reason these kind of schemes are often

preferred in many context.

(Refer Slide Time: 06:21)

.

So,  both  in  wait  and  die,  and  wound  and  wait  scheme,  the  rollback  transaction  is

restarted with its original timestamp. This is a very very important point to note. When

you  restart,  so  your  rollback  so  you  have  to  restart  that  transaction  you  restart  the

transaction  you do not  put  the timestamp of  when it  is  being restarted,  you put  the

timestamp of its original time; The time when it was started and had to be aborted and

rollback. 

So, the older transactions have precedence over the newer ones and that starvation will

get avoided.



So, now what becomes you are you are actually a new candidate because you have been

rolled back in and started again, but you carry your older timestamp. So, your precedence

has gone higher because in wait and die, and wound and wait in both actually the older

one has a precedence. 

So, by carrying your older timestamp, you inherently bring in a higher precedence in the

system. And in this way there is a precedence based ordering that will naturally always

happen. So, this will not only avoid deadlock, but this will also ensure that starvation is

avoided; So, very simple and nice scheme.

So, in this you usually have time out basically my transaction waits for a lock only for a

specified amount of time. If the lock has not been granted within that time the transaction

is rolled back and restarted, and therefore, the deadlock is not possible. It is simple to

implement, but starvation can happen in the timeout based scheme. And it is also difficult

to determine what is a good time interval to wait. 

If you wait too short, then you will spend a lot of time in the in the rollback and restart. If

you wait for too long, then your throughput will go down because several transactions

are basically waiting on logs. So, theoretically it does avoid deadlock, but in terms of

starvation and in terms of the practicality, this there are critical things to decide on this.

(Refer Slide Time: 08:24)



The second issue in terms of deadlock that we must be able to answer is well hundreds of

transactions are going on in the system. Now, how do you know that a deadlock has

happened? Because if a deadlock has happened and if you are not using a preventive

scheme to ensure that the deadlock will not will never happen theoretical proof; If you

are allowing say two phases are locking kind of protocol where deadlocks can happen

then you must know what the must be able to detect that a deadlock has happened and

then take care of it to rollback the transaction.

So, for doing this, we again create a graph, which is wait for graph which is very similar

to the precedence graph we saw earlier  which the nodes are the transactions and the

edges are ordered pair of transactions. So, what do you put an edge from T i to T j, you

put this edge in what it means is T i is waiting for T j. So, if we have a a conflict, then

certainly one transaction is holding the lock and other is other has requested for that lock.

So, what you do you put an edge for from the one that is waiting for the lock to the one

that is already holding the lock for the release of the lock, and in this way the graph gets

built up. So, naturally when T i requested it item currently being held by T j, then the

edge T i T j is inserted in the in this graph. And when the release happens then this edge

is removed because T j is no more holding the item that T i had actually required.

So, this is how this is kind of a dynamic graph the wait for graph is a kind of dynamic

graph which will regularly keep getting updated. Now, naturally from the description of

this graph, you can understand that a deadlock if a deadlock has to happen then this

graph must have a cycle.  So,  if  at  any instant  the graph has a cycle  then there is  a

deadlock;  otherwise the graph will  grow and shrink grow and shrink it  will  keep on

happening that way. 

So,  it  is  important  to  ensure  that  this  graph  remains  a  cyclic  which  now  this  is

dynamically happening hundreds of transactions, transactions are getting created, they

are getting committed, aborted, they are requesting logs they are releasing logs and so

on. So, how do you ensure that the graph at every stages is remaining a cyclic or a cycle

has happened and therefore, a deadlock is actually happening.

So,  what  you will  need to  do is  periodically  run another  process  which invokes  the

deadlock-detection in the graph that is it looks for the cycles, and the cycle is there, then



you have to do some strategy to roll back about one of the transactions, and break the

cycle and then so that the other transaction can proceed.

(Refer Slide Time: 11:29)

So, these are examples of the wait for graph. For example, here on the left as you see if

you if I if I may point out in the left, if we see that T 17 is waiting for T 18 and T 19, T

18 is waiting for T 20. So, eventually and T 20 is waiting for none. So, at some point of

time T 20 will be done and when that is done then T 18 would be able to proceed. And if

T 18 is able to proceed then T 19 would be able to proceed, and then T 17 would be able

to proceed. 

So, there is no possibility of a deadlock, whereas in here if you look in the graph on

right, then you can see that between these three they are waiting on each other. So, no

matter how long you wait this will this deadlock will never be broken, and the deadlock-

detection system has to detect this cycling and decide to abort one of these transactions

and so that  the rest  of  the  transactions  can progress.  So,  this  is  a  sample  deadlock-

detection mechanism.



(Refer Slide Time: 12:44)

So, when the deadlock is detected there has to be a recovery. So, trump transactions will

have to be rolled back to break the deadlock. And so there is a there is a strategy required

to select which transaction must rollback; naturally that should be done based on the

minimum cost that is you do not want because if you roll back then the recomputation

naturally because you have to restart and do that transaction again. 

So, you have to in terms of rollback, you have to determine how far to rollback that

transaction. There can be a total one, so that you roll back the whole transaction abort

and then restart it or you can roll back to a previous point, we discussed notions of safe

point in the transaction program.

And so it is be more effective to roll back transaction only as far as necessary to break

the deadlock, you may not need to roll back everything. Maybe this is this transaction is

participating in the deadlock, because it is holding some exclusive lock which it took

three instructions before. But before that it has done 300 instructions it is not necessary

to rollback the whole of the 300 instructions, you can just roll back up to the point where

it took that exclusive lock which is creating the problem. 

So, that those are some of the strategies which can improve the throughput and minimize

the possibility of starvation. 



Starvation will again happen if the same transaction is chosen as a victim to be rolled

back every time, which the possibility exists. And so the number of roll backs is also

usually kept  as a cost factor. So,  when you roll  back a  transaction,  you also keep a

number saying that how many times this transaction has been rolled back. 

So, higher that cost becomes then you would like to avoid doing the rollback for that

transaction because so that it does not wait infinitely in terms of (Refer Time: 14:45)

starvation.  So,  these  are  some  of  the  simple  strategies  that  roll  back  the  deadlock

recovery can be done.

(Refer Slide Time: 15:04)

So, having talked about the prevention detection and recovery from deadlocks let  us

quickly  look  at  a  simple  time-based  protocol  in  contrast  to  the  two  phase  locking

protocol we had earlier. This protocol does not lead to deadlock. So, what you do in here

is  each  transaction  is  issued a  timestamp when it  enters  the system.  So,  hold at  the

transaction, less is the value of the timestamp so that is a simple. So, time goes in the

increasing order.

Now, the protocol manages a concurrent execution such that timestamps determine they

themselves will determine the serializability order, they will determine in which order the

transaction  should  occur.  And for  that  for  each  data  item two timestamp  values  are

maintained;  one  is  a  right  time-stamp  on  the  data  item  queue,  another  is  a  read



timestamp.  So,  this  is  the  latest  read  write  and read  times  for  the  data  item.  So,  w

timestamp  Q  is  the  largest  time  stem  of  any  transaction  that  executed  a  write  Q

successfully. So, naturally what it means the largest timestamp means the latest write that

has happened. Similarly, it keeps it latest read.

(Refer Slide Time: 16:15)

Now, using that you build up this protocol, so it is again looks only at conflicting read

and write operations, and they are executed in timestamp order. So, let us suppose that let

us consider the case of read. So, a transaction T i has issued a read. 

Now, if that the timestamp of T i is less than equal to W-timestamp Q which means that

W times stamp Q is the latest write. And T s T i is a timestamp of the transaction. So, the

transaction is older than the latest write. So, the transaction T i needs to read a value that

was already overwritten because the latest write has happened after the transaction. So,

this read operation can be rejected and T i will be rolled back.

If it is in contrast, if the timestamp of the transaction is greater than the latest right time

W-timestamp  Q then  the  read  operation  is  executed  and since  we  are  doing  a  read

operation. So, this becomes the latest read operation and therefore, the read timestamp R

timestamp Q is set to the maximum of the current read timestamp and the timestamp of

the transaction. Mind you here we the timestamp one confusion that may come to your

mind is are we looking at the exact time when the read has happened or when the write



has happened, no, we are all of this reasoning is happening with the timestamp of the

transaction.

So, whenever it  started. So, it is a older transaction and newer transition that we are

reasoning with. So, when you update R-timestamp then you are the R-timestamp already

has a value which is the timestamp of the latest transaction that has read that value and

TS T i is the timestamp of the transaction that is read it now. 

So, it is not always that since this read is the last read you will update this. So, by the

sense of latest what I mean is the latest in the sense of the timestamp of the transaction

that is reading it. So, you will compute that in terms of finding the maximum of the

current read timestamp and the timestamp of this transaction.

(Refer Slide Time: 18:48)

Write is a little bit more complex, but we can reason in the same way. So, if T i issues a

write Q. And if the timestamp of T i is less than R-timestamp that is if this transaction is

it is less so it is older than the read timestamp that is it is older than the transaction that

read Q last, the youngest transaction that read the value of Q. 

So, then the value Q that T i is producing was needed earlier, it is trying to write, but

already a newer transaction has used the value. And the system assumed that what the T i

was supposed to write was not available was not produced, hence the write operation is

rejected T i does not should not write this and T i will be rolled back.



Second case if the transaction T i has a timestamp which is less than the write timestamp.

So, which means that this transaction is older than the transaction that has done the last

write;  So,  T  i  is  attempting  to  write  an  absolute  value  of  Q,  and  hence  this  write

operation  is  again  rejected  and  T i  is  rollback.  Otherwise,  in  other  cases,  the  write

operation  is  executed  and  the  write  timestamp  will  be  set  to  the  timestamp  of  this

transaction which has written it. So, this is a very simple protocol for read and write.

(Refer Slide Time: 20:36)

And here is an example shown in terms of this protocol. For example, this wanted to do a

read and this so this is the that this is a time where the transaction had started so and this

was the write that. So, when this read is happening this is the so this is naturally this is at

hold at transaction than T 3. So, this at this point, the right timestamp is that of T 3 and

this is an older one, so it was trying to read that, so this was aborted.

Similarly as you see here if I clean and start again if we look at write W this is trying to

do read and T 4, so read will this read has a timestamp which is of T 4 which is later than

the timestamp of T 3. So, this gets aborted. So, you will need to spend a little bit of time

to  convince  yourself  that  this  will  never  actually  ensure  never  actually  lead  to  any

deadlock,  and  it  is  a  very  effective  serializable  and  simple  strategy  to  ensure

serializability while it avoids the deadlock.



(Refer Slide Time: 22:08)

At  all  the  timestamp  ordering  protocol  itself  guarantees  the  serializability,  so  the

transaction with the smaller timestamp will lead to transaction with larger timestamp,

because those are the more recent transaction. So, since the ordering is always in this

manner, there cannot be any cycle in this precedence graph, because if they are recycle

then naturally, somewhere you are you will be coming from newer to an older transaction

which is not allowed in this protocol. 

So, there cannot be a cycle and so this ensures that there cannot be deadlock in this time-

based protocol, but the schedules that they produce they may not be cascade free. And

actually examples can be shown that they may not even be recoverable there may be

some irrecoverable schedules that get produced through this time-based protocol.



(Refer Slide Time: 23:10)

So, to summarize we have tried to take a look into explaining what are the different ways

to prevent deadlock; Some of the strategies and specifically we focused on the time-

based strategy. So, there are some strategies which are based on the order of accesses the

data items ordering of data items and so on. And we have specifically focused on time-

based strategies. 

And from that there are multiple time-based strategies which can prevent deadlock. And

in case the deadlock has happened then we have discussed a simple wait for graph data

structure and algorithm to be able to detect that the deadlock has happened. And if once

this has been detected, we have talked about basic strategy to recover from that that is

how do you decide  what  are  the what  is  a  good candidate  victim transaction  which

should be rolled back, which should be aborted.

And on that study we have presented a simple time-based protocol which maintains the

timestamp of transactions to decide the ordering in terms of read and write and deciding

as to whether you should continue doing a read or write or you should abort the read and

write attempt; And thereby ensuring that deadlocks do not happen in the system though

there may be other problems in this in terms of having cascading rollback or having

some irrecoverable schedules at times.


