
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 36
Recovery/1

 Welcome, to module – 36 of Database Management Systems. In this module and the

next, we will talk about recovery in databases.

(Refer Slide Time: 00:27)

In the last week, we have talked at length in terms of the transactions and the

concurrency control. And we will see how the acid properties of the transaction can be

fulfilled using the different recovery schemes.

(Refer Slide Time: 00:41)

To, specifically we will try to understand the different sources of failure and how the

recovery can be facilitated by different storage structures particularly those different

models of volatile and nonvolatile storages and we will take a look into recovery

schemes that are based on logging mechanism and for this module we will focus only on

single transactions.

(Refer Slide Time: 01:11)

So, these are the topics that will cover.

(Refer Slide Time: 01:17)

So, we what we have looked at is all database writes and reads are within a transaction

and transactions must satisfy the ACID properties and in terms of the concurrency

control we have already seen that concurrency in a controlled guarantees isolation of

transactions and in a certain way it contributes to achieving maintaining consistency.

Application programs are heavily responsible for guaranteeing consistency, but to really

guaranty the atomicity and durability of the data that the transactions reads and write the

recovery sub system is required and it also contributes to the consistency property.

(Refer Slide Time: 01:56)

So, let us look at if we are talking about recovery and the phase of failure. So, let us look

at what are the generic types of failures that can happen one is the type transactions can

fail. A transaction can fail due to logical error due to some internal error or it might fail

due to some system error. So, that the system must terminate the transaction, we have

talked about several situations where deadlock might happen and the transaction needs to

be rolled back that is a kind of transaction failure error.

 The second possible error can happen if there is a crash in the system. A system can

crash due to hardware failure power failure software failure. So, we try to make fail stop

assumptions that nonvolatile contents are assumed to be eh corrupted and database

systems consequently have to involve a number of integrity checks to prevent the

corruption of data.

And, the third broad category of failures happen with disk failure a disk might itself fail

it is hardware may fail the head may crash and when that happens then the destruction is

assumed to be detectable we must be able to detect such failures. There are checksums

and other mechanisms for detecting failures, but broadly these are the three types of

failures that a database system can go through.

(Refer Slide Time: 03:23)

So, in view of that ifs one or more of this failures happen then we need mechanisms to

recover from that let us consider a very simple situation of a transaction which we saw

earlier to that a transaction T i transfers dollar 50 from account A to account B and

therefore, two updates have to happen; A has to get debited and B has to get credited. So,

the transaction T i requires updates to A and B that are happening that must be written

that must be output to the database in a permanent manner. So, if failure may occur after

one of these modifications have happened and before both of them are made, so that is

one possibility. One possibility is we can get we have modified the database without

ensuring that the transaction will necessarily commit, but the database has been checked

transaction may not have committed. So, that will leave the database inconsistent

because the transaction will have to be rolled back or it may so happen that database has

not been modified and the, but the transaction has committed.

So, if the failure occurs at that point then there will be some lost updates. So, the

recovery algorithms strategy has to primarily take care of two things; one is during the

normal transactions it has to collect enough informations so that the recovery from

failures can be done. So, one is what we need to do while in normal transaction is going

on because during that time we need to have enough data so that we can recovery in the

phase of failure and the second set of actions are actions that can once a failure has

happened to recover the database so that we can go back to a consistent state and ensure

the atomicity consistency and durability of the transaction.

So, before we get into these discussions of the different recovery algorithms let us

quickly look into this storage model that we are assuming.

(Refer Slide Time: 05:30)

We know there is volatile storage which we have discussed about that we know this

nonvolatile storage which disk, tape, flash and all that volatile storage disappears

whenever system crashes and non-volatile storage is supposed to survive the system

crash, but it may still fail it may still cause loss of data.

So, we also consider a third kind of storage which is notionally known as stable storage.

It is called a mythical form of storage where we assume that it will survive all kinds of

failures. Now, naturally this in ideality this can never happen, but we can approximate

this by maintaining multiple copies of the same data on distinct non-volatile media and

the stables storage would be assumed to be one available component in the database

system for making the recovery systems work.

(Refer Slide Time: 06:21)

So, as you can see in this diagram below. So, we are trying to explain more of what is the

stable storage. So, this is a on the secondary storage so, you have a stable database. So,

kind of approximates that it will never fail whereas, on a on a routine basis things happen

in terms of database buffers which are basically volatile databases, the volatile memory.

So, now the fig so, what we do is we maintain multiple copies of each block of data and

keep them on separate disk. So, even if one disk fail that is possible to recover from other

disk. There are different kinds of the multiplicity that can be done even it can be located

at a remote location so that even if there is a fire or flooding the database can be

recovered, but in principle will assume that the multiple copies are not all copies can fail

at the same time.

So, it can now this will ensure the data has already been written then it is guarantee that

it will stay we have talked about rate systems, but what happens if the failure ba happens

during the data transfer where the result is still in transient state in it will live with

transient copies. So, block transfer in general can result in either in successful

completion or in partial failure, where the destination block actually has in current

information or total failure where destination block could not be updated at all. So, to

protect against the media again such failures during the data transfer the one possible

solution could be and we assume that there are only two copies of each block it could

you could have multiple copies to give you more resiliency against failure.

So, if we have two copies and the strategy could go like this that write the information

onto the first physical block then once that is successfully completed then you write the

same information on the second or physical block and the output is completed only after

the second write the physical block is successfully completed. So, that is what we need to

guarantee.

(Refer Slide Time: 08:45)

Now, to protect against that ba that happens if during this transfer with during this write

if some output operation is some failure happens. So, to recover from that you need to

find out what are the blocks which are inconsistent, because we have kept two or more

copies so ba you have to compare two copies of every disk block have kept them at

separate disks and see which one whether there has been some inconsistence. Now, this

is this is theoretically ok, but this is very expensive because there are so many different

blocks.

So, what is typically done a better solution is while you are actually doing the disk write

where you are actually doing the output on a in the process of doing the output then you

record the these writes on a nonvolatile storage say non-volatile ram or special area of

the disk and use this information during the recovery to find the blocks that are

inconsistent and only compare those copies. So, that will be naturally much faster

because memory as you know is much faster to access than the disk and these are

strategy which is typically used in the rate system we have discussed earlier.

So, if either of either copy of a inconsistent block is detected to have some kind of an

error, to checksums to the error then over write by the other copy, but if both have no

error, but are different then overwrite the second one by the first one. So, this will make

sure that you always have even if there is a transient failures you can take care of that

you know what is wrong and you can take care of and correct that.

(Refer Slide Time: 10:25)

Now, to make this kind of a mechanism work we you resort we have very simple module

of data access. We assume that there are physical blocks on the disk that that are on the

non-volatile permanent storage and that is where finally, you want your data to decide,

but you also assume that there are system buffer blocks; the blocks that we decide

temporarily in the main memory, so, they can be used in the in transit.

So, when you move the block between the disk and the main memory that is initiated by

an input operation. So, you are doing an input so, all the physical block a that is disk a

block physical block B is brought into the main memory or you have a output operation

which transfers first a buffer block B to the disk and replaces the appropriate physical

block there. So, these operations when you move physical blocks with the disk you call

them as input and output. So, and we are making some assumption that the data that we

want to write is small enough so that it fits into a block otherwise there are several

schemes of or you know spread you data over multiple blocks.

(Refer Slide Time: 11:40)

Now, the other part is each transaction on the other side is assumed to have a private

work area. So, in the private work area that transaction actually gives local copies and

these local copies say you have a data item X, so, you say that for transaction T i the

copy of that data item X is xi and say, B x is the block that contains X. So, B x is the

physical block and then you can transfer data between the transactions private area and

this buffer block in terms of read and write operations.

So, we have two kinds of operation; one is input output which is between the memory

and the physical block that is the disk and the other is read write operation which is

between the transactions private area and the system buffered blocks. So, the transaction

must perform read before accessing X for the first time and once it is done that it has a

local copy now and therefore, subsequent reads can happen from the local copy and the

write can be executed at any time before the transaction actually commits.

So, let us look at also it is a fact is that the when I want to actually output the block that

contains X, I mean your item X to be finally, written to disk the output B x need not

immediately happen after you write. So, you are doing it in two stages, from the

transactions private area to the system buffer, to the system buffer to the disk. So, first is

write the next is output, but this may not actually follow immediately once the data exists

in the system buffer it may be actually output on a at a later time whenever it is then fit to

do that.

(Refer Slide Time: 13:32)

So, let us take a very quick looks schematically here to make things some simple

understandable. So, they are data items A and B on the disk that we are talking of. So, if I

do an input operation then I am actually trans and this is the buffer this is the system

buffer. So, this is kind of a common buffer where you can keep data, we will see how to

manage this system buffer and this is the private work area of a transaction say T 1.

So, to process of read I mean if T 1 wants to if T 1 wants to read A then the that read

initiation will bring A onto the buffer area as X and then it will read X as x 1 in its

private area, it will this is where it will do the work. This is a private area where T 1 will

do the work and possibly it has generated a write item y with which needs to go back to

the disk. So, again we will do a write to the buffer area and then at a later point there will

be an output which will take this Y back to the disk.

So, this will ensure that the transaction can after reading the transaction can

independently do the write to the buffers and outputs can happen independently of that

either before that transaction commits or even after the transaction commits there are

difference in situation there are different protocols that are followed and we will see

through, but this is the basic simple model that will regularly be used.

So, please keep in mind we will talk about often will talk about three areas work area the

private work area of a transaction this is an memory and the system buffer blocks where

the data is the temporarily deciding on the way of being read or on the way of being

written and the system disk where the physical block exists. And, this is the path way

through this system buffer that the read writes will output will happen and please

remember that we will use the term read write when it is between the private work area

of a transaction and the system buffer block and will talk about input output when it is

between in terms of the physical block with the disk.

So, the data access you can I have already explained. So, in terms of the data access

these are the steps that the transaction will do to read or write as I have already

explained. Now, in terms of now, let us see that how will in the background of such a

storage access how will the recovery happen and how will the atomicity be guaranteed.

(Refer Slide Time: 16:20)

So, to ensure a atomicity in the phase of failure we need to output information describing

the modifications to stable storage with input modifying database itself. So, what we are

saying that to be able to recover that we should write the changes to the stable storage

you recall that stable storage something that is assumed to be not failing without actually

modifying database.

Now, we do a very simple mechanism which is called a log based recovery mechanism.

So, we will first talk about this log based recovery mechanism what are the key concepts

of logging and redo undo redo kind of operations and present the actual recovery

algorithm. There are other alternatives also like shadow paging we will not discuss about

that and I would like to again remind you that in this module we are talking about single

transactions at a time, serial execution.

In the next module we will talk about concurrency of the; I mean the behavior of

recovery algorithms and in the case of concurrent transactions.

(Refer Slide Time: 17:29)

So, now let us talk about the log based recovery mechanism. So, ma in the log based

recovery mechanism you can you can see this is the basic this is your stable database

which you want to make use of, these are your buffers you talked off and we will have

certain logs the information of what have been doing in terms of the log buffers and the

also is stable log which is a log that is written in the stable database. So, once we

understand what is logging you will understand this, but I just wanted to show you that

like the data there are buffer copies as well as stable database copies in terms of log also

there will be buffer copies as well as stable, log copies.

(Refer Slide Time: 18:18)

So, a log is kept in the stable storage, it is a sequence of records. So, log is basically a

record of what and. So, it is like a if am doing some task we have always every task I do

I keep a record of what am actually be doing and that is called the logging. So, when a

transaction starts I write a log record which puts the transaction ID say T i and then puts

a keyword start to the log. So, that indicates that the transaction T i has started and when

it is about to execute a write, so, ma before it has actually executed the write, then I write

a log record which looks like this which is.

So, here if we look carefully this is the idea of the transaction X is the data item that you

want in to write V 1 is the current value of the data item which kind of we can say is the

old value and V 2 is the value that we want to actually write. So, here you can see that

we are clearly keeping a track of what we are writing and in that process what is the

original value that would get changed. So, that is the main important factor of this

logging that every with every write you remember as to what value was originally there

and what value we have actually changed it to in that transaction.

Now, in this process finally, when that the transaction finishes the last statement of the

log record is T i commit. So, that actually is a meaning of committing a transaction when

this log record is written out. So, that is. So, a log will have start then different write log

records and then finally, a commit log record.

So, there are basically two approaches of using log one is called immediate database

modification this is what we would follow here and there is a differed database

modification.

(Refer Slide Time: 20:19)

In the immediate modification scheme the ma it allows updates of a uncommitted

transaction to be made to the buffer or the disk itself before the transaction commit. So,

before the transaction has committed that is before the T i commit log record has been

written at that point itself you allow the updates of the transaction to be made to the

buffer or the disk and the update log record must be written before the database is

actually written. So, you must first write the log and then actual database item. So, and

we assume that the log record is output directly to the stable storage. So, that it is not

there is no possibility of is getting lost.

Now, output of the updated blocks to disk storage can take place, that is the final actual

output this is where we have written the log that that am doing this change, but the actual

change we can take place any time before the transaction commits or even after the

transaction commits. If you follow this ma protocol then you say you are in the

immediate modification scheme and in fact, the order in which the blocks are output that

finally, written to the disk may be different from the order in which they were originally

written, but the log records the will have to be written before these each one of this

output are done.

In the deferred modification scheme the change updates are performed to buffer and disk

only at the time of transaction commit not any time before that. So, that simplify some

aspects of recovery, but it has other issues. So, we will not talk about this scheme, just

know that there is an alternate scheme for doing things.

(Refer Slide Time: 22:03)

So, now formally speaking what is transaction commit? A transaction commit is said

transaction is said to have committed if it commit log record is output to the stable

storage. That is T i commit has gone to the stables stable storage is the meaning of the

transaction has been committed. Obviously, all previous log records of the transactions

must have been outputted already because that those commit those outputs will have

happen in the same order in which the actions are taken.

Now, the writes performed by the transaction may still in the buffer. So, you have

transaction is committed everything is done, but your actual writes that are performed

may not have been outputted. They are they may still be in the buffer when the

transaction commits and those may be output at a later point of time.

(Refer Slide Time: 22:52)

So, let us take an example here. Let us look at an example. So, here you see the log

records and here is the sequence of write and output A 1 is happening. So, in the log

record the transaction starts here. So, you have a log record of start, what is the meaning

of this? The meaning of this is transaction T 0 is trying to write A and the current value is

1000 and it wants to change it to 950. So, this log record is written and you can see that

the actual write actual write has not happened here, actual write is not done, but it is it

already has must like in the immediate database modification scheme it must write the

log record before actually writing the output, actually doing the output or doing the

write. So, this has happened here.

Similarly, the next one is another update transaction for B and actual writes have

happened. So, which means the data has been written from the transactions private work

area to the system buffer and then the transaction has transaction T 0 has done commits.

So, at this point if you go up to this then the commit of the transaction is already

completed and another transaction T 1 starts you please remember that we have said that

we will we are using serial ma schedules only. So, only now another transaction can

commit that has started and that has written log record for updating C from 700 to 600.

So, there is a write for 600 then T 1 has commit.

In the meanwhile and at this stage, in the meanwhile these blocks have been output. So,

they have actually been written the disk and you can understand that this block B B is a

block that contains the data of data item the updated value of data item B and ma this B

C has the updated value of data item C. So, you can have see that actually these output of

B is happening after the transactions is 0 has committed whereas, for update of data you

can see the output is happening af before the T 1 has committed. So, here it is happening

after the commit, but here it is happening before the commit.

So, both of these are permitted both of these are allowed in terms of the protocol that we

are following. And, you can also see that in terms of the order in which they were written

A was written earlier, but A is output at a later point of time because that is a different

sequence in which the system might decide for writing the buffer onto the disk.

So, this is the immediate database modification scheme through which we can write the

logs.

(Refer Slide Time: 25:51)

Now, the question is we have written the logs. So, what is the use of those logs?

Naturally, the use of those logs are in terms of two operations to which we say are undo

operation and redo operation and undo operation is one which basically undoes the

operation the effect of an update. So, while ma you have done you have if this is a log

record then undoing, so, this meant that X was changed it had a value V 1 and it was

changed to V 2. If you undo that then the old value comes back to this old value comes

back to X. So, that is if I undo this particular action the which was put in the log record

then X will get back it is original value and redo is doing the same thing over again if I

redo for this log record then the value of V 2 will again reset on X. So, these are the two

simple undo and redo operations which will help us achieve the recovery systems input.

So, what is meant by undo redo of transactions let us understand. So, when I undo a

transaction T i that restores the values of all data items updated by T i to their old values.

So, the values have been updated in this forward order. So, when you go to undo you will

actually will have to do that in the reverse order, because it is quite possible that X got 1

here then at a some at a some later point it was updated to 17 then at some later point it

was updated to 13. So, this update possibly had happened from 0, this update had

happened from 1, this update had happened from 3. So, all those transactions records are

there then you going backwards. So, you will first restore X back to 17 because this is

then this back restoring back to 1 then going back to 0, in this order it will go on.

And, every time you restore you write that you write that out as a record which is known

as redo, redo only record. So, you can see that here you are not trying to remember the

original value you are just writing the value that you have written out in terms of the

undo operation that is the old value and the going in this manner undo operation will

terminate when you have come across the beginning of this one process, when it is

complete then a log record T i abort is written out which says that the undo is actually

over. So, this is the undo operation.

(Refer Slide Time: 28:36)

For redo you said that the redo is doing the transactions doing the same instructions of

the transactions in the same manner, it was done earlier. So, that unlike undo which goes

backwards redo goes forward and it starts from the first log record of this transaction and

goes on till the end and for this there is no separate logging for this operation.

(Refer Slide Time: 29:04)

Now, how will the undo redo operations be used? There are two major situations in

which they are used one is undo is used transactions roll back have to roll back during

normal operation. That is nothing has I mean there is no system failure or there is no data

disk failure anything, but if the transaction has a normal failure that it cannot complete it

is execution due to some logical error or because it has to roll back because of deadlock

or something, then you what you do you just undo the whole effect of the transaction go

backwards and keep on undoing. But, when the there is a failure there is a failure and

you have to recover from that then undo and redo operations both will be required as we

will soon see.

So, we also need to deal with the case where the recovery from failure while you are

recovering from failure another failure happens. So, what do you do in that case that is

more complicated will talk about that later?

(Refer Slide Time: 30:04)

So, first let us discuss what happens when you roll back at transactions during normal

operation. So, let T i be the transaction. So, you have to naturally do the undo because

you have to undo the effect that it has already created. So, you will scan the log records

from the end and for each log record which is kind of an update like this you will

perform in update to restore the original value the old value and write out a redo only log

record or which is called compensation log record which says that this has been undone

to the value V 1 which is the original value of the transaction original value of the data

item sorry.

Now, in going in this process backwards at some point of time you will reach come

across T i start log record when you face come across that you write log record T i abort

indicating that the undo of that transaction is over. So, this is the basic process of

undoing the transactions during rollback.

(Refer Slide Time: 31:07)

In the other case if you are recovering from a failure if there has been a failure then you

do something which needs to be understood carefully. So, the transaction T i needs to be

undone if the log contains the record start T i start, but it does not contain either T i

commit or T i abort. So, perform T i start you will know that it has started, but because of

failure it could not complete, because if it could complete or if before that if it had to roll

back because of the normal execution then it would have written T i commit or T i abort,

but because of system failure you could not write any one of them. So, the transaction

has to be rolled back.

The other case is the case where the transaction needs to be redone is when then it

contains the record T i start, but in addition it also contains the record T i commit or T i

abort. So, this is the transaction which had completed successfully, did the start, it did the

commit or it rolled back the whole thing happened successfully, but because of system

failure changes have not been able to take place and therefore, you will you have to again

execute that transactions. So, that is why you do a re dones. In the earlier case it is

undone you want to undo the effect, here the effects were given, but they somehow could

not be made durable the database have become inconsistent. So, you need to redo that

whole thing.

So, ma it may sound little bit awkwardness that if the it contains the T i abort why should

you actually redo the transaction this is a just to keep things simple so that you can just

trace back the original history. So, you do not try to really optimize, but you just trace

back the original history and do whatever had happened in the way and then that

simplifies your algorithm significantly. And, then if there is a certain things which have

been done by the undo operation you also want to go through those and maintain that

status.

(Refer Slide Time: 33:23)

So, here are some examples here they transaction we are showing it is failure recovery

action at every case. So, if in case a the transaction has started and we made changes to A

and B and at that time the failure happens. So, naturally the start is there and at commit is

not there or abort is no there. So, these has to be undone. So, this will be undone A will

get back the value thousand and B we will get back the value 2000 and to such record T

0, B, 2000 and T 0, A 2000 that two compensation log records will be and then it T 0

abort will be written.

Now, if you look at second transaction transaction just a second states of as in b then you

will see that T 0 has actually started and committed and T 1 has started after that which

could not complete after updating C. So, in the case of b since T 0 has start and commit

both you have to redo that because you have lost all these changes we have to redo again

and for that you do not log anything and then T 1 could not complete because it has start

and does not have the abort or commit. So, you would log record for undoing it, undoing

T 1 and you write T 1, C, 100 and T 1, abort.

In the third case ma both transaction T 0 and transaction T 1 has commit start and

commit and both have completed. So, you have to redo both of them. So, these are the

basic different cases strategies that you have in place.

(Refer Slide Time: 34:59)

Now, the question is if you have to do this for all transactions when a failure happens and

a failure may have happened say after 1 year or after 8, 9, 10 months and so on. So, there

will be a huge you know set of redo, undo operations that you will have do it will run for

a very long time. So, what we do is we create something like a check pointing where we

said, ok. We will periodically choose a point of time where we will make sure that all

updates have actually been consistently put in the disk and the database is surely on a

consistent state and that is called check pointing.

So, whatever is done is a at a chosen point of check pointing, time of check pointing all

updates are stopped in database. So, there is no changing changes happening in all

transaction are no new transactions are allowed what is happening as.

So, you make sure that all records that are currently residing in your buffer is flushed on

to the stable storage all modified buffer blocks which were not output we have also

outputted and then you write that this is a write a log record saying the check point L on

to the stable storage, where L is basically the transactions that were active at the time of

checkpoint in the transactions that have already completed you do not need to remember

because they have they are changes by the process of outputting all log records and all

modified buffer on to disk, you make sure that all completed transactions are fully

secured now, they are consistent, they are you would have to, but those which are which

were still continuing you keep the list and write that out in terms of the checkpoint log

record and take it into the stable storage.

(Refer Slide Time: 36:52)

So, during recovery what we need to consider is we have to now we not have to go back

to the last time the data fail we just need to go back to the last time we did check

pointing and when you go back to the check pointing you already know that ma what are

the transactions that are live at the time of check pointing. So, you can scan backwards

and check out what were they had started. So, you need to and undo redo those are

transactions and then you see what are the transactions that have committed aborted have

already there in the output in the stable storage.

So, some of the earlier part of the log may need may be needed for undo operations. So,

you continue scanning backwards till you find in T i start and then you take care of that.

(Refer Slide Time: 37:48)

Let me just explain through an example. So, let us say that this is the checkpoint where

you froze everything and did not allow any further updates to happen and rolled back all

the data. So, what has happened is in this transaction T 1 which is committed before the

last checkpoint naturally there was no obtained pending for that. So, you have made sure

that all the updates in terms of the log as well as the system buffer has been written on to

have been output on to the disk at the time of check pointing. So, you do not

remembering need to remember this transaction at all, so this can simply be ignored.

Now, at the checkpoint you can see that transaction T 1 was in execution. So, certain

things had happened. So, at the checkpoint the part that has already happened the log

records for that as well as the output for that this has already been firmly put into that

because these are checkpoints because you are writing everything, but this transaction is

still in execution. So, you will put this transaction in the checkpoint log list. So, we will

say this is this is the T 2 and this will need to be looked at. If you so, let us see what is

you will do with this.

(Refer Slide Time: 39:02)

So, if we look at then naturally T 2 if you have a failure at this point if you have a failure

at this point as you have here then naturally this is the last stable point you know where

everything was written to the disk in a consistent manner. So, what you will need to do

you will have to execute transaction T 2 once more to make sure that it is you know up to

this point this being done, so, you need to redo this part. Similarly, T 3 if you look at it

started after the checkpoint and it committed before the system failure. So, you need to

redo that as well.

And, if you look into the T 4 if you look into T 4 you can see that it started before the

system failure of course, after the checkpoint and it was still running when the failure

happens. So, you do not know what are the final results of that, so, what you will need to

do? You will need to undo this transaction. So, this has no impact you can just ignore

these cases you have to redo the transaction and in this case, in case of T 4 you have to

undo the transaction.

So, by check pointing and you obviously, the point you the time you choose for check

pointing has to be judiciously done it may not be very frequent and then it will there be a

lot of over it at the same time if you do it in a in a very after a very long period of time

then naturally you will not get the benefits, but check pointing is a very critical feature of

doing the recovery in the databases.

(Refer Slide Time: 40:36)

So, to summarize we have seen that there are may be different types of failures and

different strategies are required for handling them. And we have also seen that we use

different kinds of storage structures and they judicious mix and then arrangement of

these the structure can guarantee, recovery from failures. And we have taken their brief

look into the log base recovery mechanism which is efficient as well as effective and I

will remind you that all this discussion was done for serial transactions only.

