
Database Management System
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 07
Introduction to SQL/2

Welcome to module 7 of database management systems, this is a second part out of total

3 of introduction to SQL.

(Refer Slide Time: 00:31)

In the last module, we have discussed about the evolution of SQL the data definition

language part of it and the basic structure of queries.

(Refer Slide Time: 00:42)

In the current module we will complete the understanding of the basics queries structure

and will see how, common set theoretic operations can be performed in terms of queries.

We will familiarize ourselves with the handling of null values and aggregation operation,

that will be frequently required for forming queries.

(Refer Slide Time: 01:05)

.

So, this is a module outline these are the topics, that we will discuss. So, we started the

discussion of some more basic operations in the query.

(Refer Slide Time: 01:15)

We have already discussed this that, if we do select star from 2 tables then it results in a

Cartesian product we have seen this result earlier..

(Refer Slide Time: 01:26)

 (Refer Slide Time: 01:32)

Know by itself as we had said that, by itself the Cartesian product may not really make a

lot of you may not be very useful, but suppose we want to answer this kind of a query,

that find all names of all instructors who have taught some course and for those you also

write the course_id. So, what we are interested in is the name of the instructor and

course_id.

So, we put that on the select course these are the 2 tables that are required because, the

name of the instructor is there in the instructor table relation and then the relationship

between which instructor teach which course is in the teachers table. So, in the instructor

table we have the name in the teachers table, we have the course_id and also this

relationship as to which course is taught by which teacher and here, we have the

relationship between which id of the instructor has which name. So, what we do is, when

we do this Cartesian product will get something like this, as we have already seen, but

we want to qualify it by with a predicate which say that, we will out of all these

combinations will choose only those where, the instructor.ID equals the teachers.ID. So,

if we look at say in the first row the instructor.ID is this, teachers.ID is this, which is id

of the teachers table they are same. So, which says the this instructors Srinivasan actually

teaches the course CS-101 whereas, if you look into this row it says that instructor.ID is

this and teaches.ID is this and we are really not interested in this combination, because

this combination does not convey anything meaningful. So, by the use of this where

clause, we will try to choose only those records where, these 2 ids are same which will

tell us that, this particular instructor actually teaches that particular course.

So, if we do that, then you will find that majority of the records that, actually came about

in the Cartesian product are eliminated from this result. So, I have struck them out. So,

you can currently see in this part you can see only 4 records the 3 courses taught by

Srinivasan. So, and the one course taught by you. So, in the output you will have this

name, this name part and this course_id part because, you are projecting on these 2. So,

this will be the output table which will get generated and just to remind you, this is the

notion of natural join that, we had discussed in relational algebra in this case we will

actually call it equi join because, we are using a equality condition after the Cartesian

product to join these 2 relationship. So, this is a very critical operation in many of cases

in our database query system.

(Refer Slide Time: 05:23)

There is and this is another extension of this similar example. So, here we have added

another predicate in the where clause, specifying that instructed or department name is

art..

So, which means this will now, give the names of all instructors in the art department

only who have taught some course and specify their course_id. So, in different such

ways, you can manipulate and create queries.

(Refer Slide Time: 05:57)

It is possible to read them, we have already seen examples you can rename a relation you

can rename an attribute and the style is to use as. So, here you can see that, in the select

query we have said from instructor as T. So, the name of this relation can be treated as T

and we again see that as instructor as S. So, actually what we are doing a join between

the same relation instructor and instructor.

So, and we are trying to find out all instructor. So, you have higher salary than some

instructor in computer science. So, the some instructor in computer science is specified

by this condition, because department has to be computer science and the fact that salary

is higher. So, as if you treat that, though it is actually a join between a product between

instructor and instructor the same relation, but by renaming you treat them as if they are

2 different tables having name T and S, and then it becomes easier to write this kind of

query. So, otherwise it is it is quite difficult to write this query to find out, because you

need to actually create a product of one relation with itself..

(Refer Slide Time: 07:30)

Keyword as is optional you can just write instructor, and then the name the new name

that you want to give and that itself field work here. Is another Cartesian product

example, here given a relation which is which lists a person and his or her supervisor, we

want to find out all supervisors direct or indirect of that person.

So, I leave this as an exercise to you to think over as to how we can actually compute

this query?

(Refer Slide Time: 07:56)

SQL supports several string operations and of particular interest at 2 specific symbols,

characters which allow us doing certain match, percentage is used to match any substring

and underscore is used to match any particular character and we use a keyword like, to

find out different string patterns that can be matched. So, here we want to find the names

of all instructors, whose name includes the substring d a r and by writing this so saying

the predicate is formed is named like this.

So, what is there is a percentage before there is a percentage after. So, anywhere d a r

will feature in the name, this predicate will turn out to be true otherwise if there is no d a

r in the name the predicate will turn out to be false and that particular record will not get

selected. So, in this way we can using like, we can actually do different kinds string

operations as conditions in the weight loss or also..

(Refer Slide Time: 09:07)

So now, naturally this brings in an issue of for what if my string itself has a percentage or

an underscore character. So, the rule followed is you will need to escape that, with the

escape character that you define. This is a style which you have seen in C programming

as well.

(Refer Slide Time: 09:29)

Patterns are certainly case sensitive. So, it depends it will distinguish between upper case

as well as lower case, and these are different examples of string matching that you can do

where, you can match at this beginning of a string, end of a string, anywhere in the

string, specific number of characters in a string and so on. SQL supports concatenation

conversion of lower to upper case and vice versa and different other common string

operations, those are available as functions in SQL and can be used for convenience.

(Refer Slide Time: 10:09)

Now, let us different question let us say, we have computed a query and then often we

would want, that the result be ordered in according to certain order particularly the value

of certain field if we want the result to be ordered, then SQL allows you to do that by

another clause that you add to the query, which is called order by. So, what this will do

we have already seen this query this will find out the names of all the instructors and the

names will occur in a distinct manner because, distinct is specified, but then the output

will be in terms ordered by the name.

And the ordering can be descending or ascending by you can control that, by specifying

whether you want descending or ascending by default the ordering is ascending. So, that

makes the presentation of the result of and very easy and you can certainly sort on

multiple fields as well, so it can be ordered based on combination of fields.

(Refer Slide Time: 11:15)

SQL were closed also allows between as a comparison parameter. So, between can

specify 2 values. So that, whenever the field value will be between these 2 given values

the condition will be predicated will be taken to be true otherwise is taken to be false.

You can compare based on people as well. So, in this case you could have written, you

could have checked for equality of instructor.ID with teachers.ID and department name

with the literal biology, but you can compact it by writing a tuple notation as is shown

here. So, these are common convenient ways of writing different back clause..

(Refer Slide Time: 12:02)

Now, we have specified that SQL does carry duplicates. So, unlike relational algebra

which set theoretically specify that, their duplicates should not be there if in SQL there

could be duplicate entries in the same relation. So, there is a this is called when

duplicates are allowed in set theory, then such sets where duplicates are allowed and

known as multi sets. So, there are multi set versions of the SQL queries or so to say the

relational algebra operations.

So, you have a selection, which can be multi set selection which means that, if there are

certain c1 number of copies of a tuple in the relation, which satisfy the condition theta

then all of them will feature in the result. And all those copies can be seen

simultaneously, because it is a multi-set condition, similar definitions are hold for

projection, as well as for Cartesian product. So, I will leave it to you to go through the

details and convince yourself that, these multi set relations really extend the traditional

single set distinct definition of the relational algebra.

(Refer Slide Time: 13:27)

So, here is an example where, there are 2 multi set relations as you can see particularly

this one, which has identical duplicate entries. So, using that you can define a Cartesian

you can define a projection of r1 on B r1 on B, which will certainly give you it is you are

doing projection on B. So, it will give you a only. So, you will have this result itself will

be a multi set because you will get 2 as. So, this result will be like a a, and then you have

r 2 with which you are doing the Cartesian product. So, you will have all possible

combinations all these 6 are the result in the SQL whereas, in set theory typically the

result should have been only these 2 tuples.

(Refer Slide Time: 14:38)

 (Refer Slide Time: 14:43)

Now, we take a quick look into the common set operations. So, it is possible to do union,

intersection, difference kind of operations very easily with SQL queries. So, suppose we

want to find all courses, that ran in fall 2009 or in spring 2010. So, certainly the first part

of the query is simple. This will give you all courses that ran. So, you are taking out the

course_id from section is where, the course running information is provided and you part

putting 2 conditions, which say that they actually this courses ran in fall 2009.

So, this is the first query the second query says the courses, that ran in spring 2010 and

you are you have an or condition in the statement of what you are looking for. So, you do

a union, union is another keyword. So, this will simply give you a relation of the

course_id attribute as the only attribute, which has records from the first as well as the

second query. Similarly, you can find out the courses that ran, both in fall 2009 and

spring 2010 by using intersect, which basically give you the intersection of the result of

the first and the second query.

You could also do difference set difference by doing find courses, that ran in fall 2009,

but not in 2010. So, what will that mean, that will mean that the result of the first query

from the results of the second query be subtracted be done a difference from. So, those

that, had run in the fall 2009 and then was again run in spring 2010 will get removed. So,

that is done through the accept keyword.

So, in this way you can very easily do set operations, whenever that is easy to conceive;

obviously, you can write these queries in several other different forms, but this is just to

show you how set theoretic operations can be easily written.

(Refer Slide Time: 17:00)

You can do set operations like, this in terms of fine salaries of all instructions that are

less than a largest salary. So, again we are using renaming to think of the same relation as

2, and then as if from the relation T you are trying to look at relation S and finding out

what are the salaries, which are smaller than that and certainly whatever comes in out is

the one which is not the largest because, certainly the largest will not satisfy this

particular condition, because it will get compared with itself. You can find salaries of all

instructors, and then you can find the largest salary.

So, this is all salaries which are less than largest, this is all salaries including the largest.

So, what happens if you subtract that is from this if you subtract this from all salaries, if

you remove the salaries, that are not largest naturally what you get is a largest salary. So,

this is a interesting way to find the largest salary we will see later on that there could be

several other ways particularly the use of aggregate function, which make these

computations easier to perform, but these are the typical ways to use set theoretic

operations.

(Refer Slide Time: 18:29)

The set operations, so we have seen 3 of them union, intersect and except they

automatically these operations are set theoretic. So, each of them automatically, eliminate

the duplicate, unlike what SQL by default, SQL by default does what allows duplicates,

but set operations will eliminate duplicates, because they are set operations. So, if you

want the SQL type of behaviour, if you want the duplicates to be preserved, then you can

have a multi set version of these set operations, which are known as union all, intersect

all, accept all like that.

And naturally if you do these operations then, here is the simple formula of the number

of tuples, that will get computed in different cases you can study and convince yourself

that these are the correct numbers. Let us, go to the treatment of we talked about null

values, that we said that it is possible that certain records in a relation may have one or

more attributes where, the value is not known and to represent, that the value is not

known we are putting a placeholder called null.

(Refer Slide Time: 19:52)

So, let us see what is the consequence of that null value in terms of doing these query

operations. So, the null signifies an unknown value. So, if I do 5 plus null then naturally

the result is null. So, what you are saying that I am adding an unknown quantity to 5. So,

then what would you say is the result is unknown. So, that is the basic semantics of

adding null to a number. So, it is possible to check, if particularly a field is a null for a

record, and that is done by a predicate is null.

So, in this particular query we are trying to find all instructors, whose salary is null that

is not known. So, this is a predicate. So, for a particular record for which salaries null,

this will become true and that will get included in the result, but for all records for which,

there is some value for the salary. So, salary is known it is not null those will not get

included in the result.

(Refer Slide Time: 20:58)

So, the basic semantics of null is then, combined with the truth values because, we know

our basic predicate logic is 2 values true and false. But now, you have a third value

unknown that is, you may not know the value of a predicate. So, how does it play around

with the true and false values you can reason through that quite easily if you are

comparing with a null in whatever way, then naturally the result is unknown. So, it

returns a null, if you are doing any connectives for example, if you are doing or of null or

true, then the result should be true because, in or we say that if any of the components is

true then the result is true.

So, here you do not need to know what is that unknown well you can say it is true, but if

you do or with false or of unknown with false the second row or of unknown with false if

you do this, then naturally this is unknown because, since this is false the result would be

true only if unknown value is true and the result would be false if the unknown value is

false, you do not know what that unknown value is. So, you have to say that you have

result is unknown. So, using that same logic you could see verify I would ask you to

verify offline at home you please verify, that all these combinations of true false with

unknown are valid. So, if P is unknown is evaluate will is as a predicate will evaluate to

true if P is not known..

 (Refer Slide Time: 23:05)

Now, we come to the aggregate functions, there are several aggregate functions they can

be used for convenience and these are the common months, that operate on the multi set

values naturally aggregate functions operate on a particular column they try to aggregate

in a particular column and return a single value for example, average would be meaning,

that you are trying to find average of the values of a particular column.

(Refer Slide Time: 23:28)

So, here is an example. So, we are trying to find the average salary of instructors in

computer science department. So, naturally what you output is average salary. So, mind

you this will this output relation will have one attribute, which is average salary and

since, average salary is a single quantity it will only have one, and here I have made use

of this aggregate function average. So, it says you do average on the attribute salary and

where do you get that attribute, from you get it from the table instructor and then we are

saying that we are not interested to find average of salary of all instructors. We are

interested to find the average salary of those instructors who work for computer science.

So, you put this back clause. So, this will ensure, that you find the average salary of

instructors in computer science department.

So, in similar way you can use other aggregate functions like, if you want to know the

total number of instructors who teach a course in this semester. So, you first put the

where clause, naturally you where will you find this information you will find this

information in teachers, teachers is the relation which tells you which instructor is

teaching what course. So, that comes in from then you have to specify that teaching a

course in spring 2010 semester. So, the where clause specifies, that the semester is spring

and the year is 2010. So, this will give you all records, which show that the some

instructor is teaching the course in spring 2010 semester.

Now, naturally there could be multiple the same instructor could happen multiple times,

because an instructor may be teaching more than one course. So, you make the

instructor.ID, instructor.ID that you have here, you make that distinct. So, that you get

only those instructors every instructor who is teaching one course or more than one

course will feature only once in this total list, and then you simply count it use aggregate

function count on that.

So, that will tell you how many instructors are teaching some course in spring 2010 mind

you if this is critical to use this key word distinct, because unless you use that, then all

that you will eventually find out is not the number of instructors who are teaching the

course you will find out the number of courses, that are being offered in spring 2010

because, there could be the same instructor teaching more than one course. If you just

want to count the number of tuples you can do count on star because, what is star is all

the attributes. So, from if we want to find out the number of course, I suggest to count

star on course..

(Refer Slide Time: 27:03)

So, this is showing you the computation of average salary of instructors in each

department.

So now, what do you want to do is earlier you try to find out the average salary in one

department. Now, you want that for all the departments for each department I want. So,

my result now, is not a single row it is not a single value it is a pair where, I show the

department and the average salary in that department. So, this is what I want visible and

this is what I have.

So, naturally the information comes from instructor, that is from what I want is a

department name and the average salary and I want to give it a nice name avg_salary. So,

I have done a rename. So, I get avg_salary here, but then what I want is I do not want an

average d1 over this whole set of fields I want separate average to be done here, to be

done here, to be done on this to be on this. So, these are these are basically groupings by

the department as you can see, that this particular relation has been sorted according to

the department name.

So, when I want to do apply an aggregate function on certain subgroups of records, I use

this particular clause group by and use a name of a field. So, what it does is if the values

in the group by field in this case department name are identical those records are put

together and over those records and average is computed. So, the average, that is

computed over these records are put in here, average that is computed in terms of these

records are put in here, there is only one record, so average that is computed in terms of

that is put in here. So, group by is a very useful feature along with the aggregation

functions and it allows you to club information based on certain attribute and then

compute the aggregation on some other field..

(Refer Slide Time: 29:27)

Mind you will have to when you do group by and create the result id result table you will

have to make sure that, all your result table attribute are used in the group by, which is

not an aggregate function. So, here ID is not used. So, this is not a query, that SQL would

support.

(Refer Slide Time: 29:53)

You can further refine your result is saying that, fine names and average salary of all

departments this much you have already done.

Now, you are qualifying that, whose average salary is greater than 42000. So, of all that

we have for example, if we look in here for example, in this music department average

salary is less than 42000. So, you do not want that in the result you want only those

where, the average salary is greater than 42000 and the way to do that is to have add

another clause called having they say that, the average salary is greater than 42000. So,

you are adding another predicate for actually qualifying the aggregated value. Now, the

having clause actually applies after along with the group by because, naturally the having

relates to the grouping.

So, once the grouping has happened groups have been formed then the having clause will

be evaluated on that, in contrast where clause also has a predicate, but the where clause

is applied before forming the groups. So, this point this note has to be understood

carefully because, if you have a where clause to choose the records they it will first

apply, then out of those records chosen the grouping will happen and once the grouping

has happened, then the aggregate function will evaluate and the having clause will get

evaluated the predicate of having clause will get evaluated.

(Refer Slide Time: 31:45)

Certainly, if there are null values in terms of aggregates, then there is a question of what

will happen. So, the general strategy is that, whenever you perform aggregation then the

null values are all ignored. So, if on that field there is no value which is not null, that is if

all values are null then the result is null otherwise the result is computed by ignoring the

null values..

So, these are what do you have of course, if you count then if the collection has only null

values the count will return you 0, but all other aggregates will return you simply null.

(Refer Slide Time: 32:29)

So, to summarize we have we had started the basic understanding of the basics query

structure in the last module. Now, we have completed that with some more additional

operations, we have understood the set theoretic operations and very importantly we

have familiarized with the treatment of null values and aggregation functions particularly

the group by and having clauses and how do null values and aggregation interact in terms

of an SQL query.

