
Object – Oriented System Development using UML, Java and Pattern

Professor. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Basic Concepts in UML

Lecture 02

(Refer Slide Time: 00:14)

Welcome to this lecture. In the last lecture, we had discussed some very basic aspects. We

had said that, in this course we are going to discuss UML first. The unified modeling

language is a set of notations and grammar rules just like any language. UML is a language

just like any language but then it is a graphical language. In English, you use alphabets and

grammar rules, but here, we will use graphical symbols and then some rules about how to

combine the symbols to come up with some meaningful models of object oriented systems. In

the last lecture, we had discussed about how UML came about we said that a large number of

design methodologies existed in the early 90s and these were prominent techniques, in that

sense, in the sense that they were used extensively.

Many projects were being developed using these techniques. Some of the prominent

techniques are OMT, the object modeling technique, the Booch’s methodology. OMT was

proposed by Rumbaugh Blaha etcetera and Booch’s methodology was proposed by Grady

Booch. Object oriented software engineering, this is another design methodology proposed

by Jacobson. Odell’s methodology by Odell. Shlaer and Mellor methodology by Shlaer and

Mellor 92 and each of these had different symbols and rules of combining the symbols to get

meaningful models and UML drew upon these various methodologies that existed. Many of

these symbols were assimilated into UML and of course UML propose some symbols which

are not there in any of this methodologies, symbols, grammar rules and models which are not

there.

(Refer Slide Time: 02:57)

If we pictorially show, how the different models were used in UML. As you can see in this

diagram UML to a large extent drew upon the OMT. OMT was one of the most popular

technique that was used in 90s and large part of UML is similar to OMT. If you know OMT,

you can find the similarity in UML. But, there are some parts which are not there in UML but

have been adapted from object oriented software engineering, Jacobson’s method and the

Booch’s methodology and also you can see here, that some part of UML is not present in any

of the methodology, these are some new notations and models which have been put into

UML.

(Refer Slide Time: 03:57)

It was adopted, by the object management group in 1997. OMG is association of industries

and they don’t really formulate standards, but then they popularize certain techniques and the

member companies. In these association they start using it and it becomes a de facto standard,

because the use becomes widespread and the UML was adopted by OMG. Since 1997, UML

has become very popular year after year and now it is almost universally used all over in

academics and industry and not only it is used in software modeling, software development,

but also the notations are so elegant and popular that even in other industries, the UML is

used.

For example, in many industry we have this build to order manufacturing, where the

customer places the order for some equipment maybe a car, maybe a machinery and the

company builds according to the customer specific order and the way, the car or a machine is

described is often based on UML, because this has turned out to be a very elegant modeling

language. It becomes not only easy for the customers to learn it and specify what they really

want, but also it provides a very elegant model which the manufacturer can use to give a car

or a machine that complies to the customer’s requirement.

(Refer Slide Time: 06:23)

As we were discussing, in the early 90s many techniques were existing. Not only they were

existing, there were also several versions each of these techniques were evolving, they are

bringing out new notions etc. and around 1997, the UML 0.8 was proposed and UML 1 was

accepted by OMG 1997 and since then it has still been growing, it has been evolving. So,

initially there was a fragmented set of notions, different companies were using different

notations and even in the same company different notations were used and then unification, a

set of notations which are standard, all companies, all projects use the same notation and this

has helped, reusing design getting adjusted to a new design environment or if you learn a

design in your college, you go to the industry and find that the same one is being used.

So, that is the advantage here, reuse and reuse of design solutions and you can straight away

use the technique once you have learnt it. But then it has been receiving feedback on how to

improve, what is lacking to be able to design some specific systems and based on that UML

has been evolving and one major release of UML is UML 2.0. It has been evolving with

different versions, incrementally. But a major release in UML 2.0, because of the many

industry problems specifically the embedded systems required different sets of notations, for

events, signals and so on and UML 2.0 was brought out.

(Refer Slide Time: 08:55)

UML still continues to develop starting with UML 1.0. In 1997, new versions have been

coming up. These are refinements to the UML and a major revision to UML in 2003, which

is UML 2.0 and the main improvements here to UML are application to embedded systems,

the embedded systems have concurrency, events, signals, reaction to events and so on and

these have been new notations have been incorporated. Some of the notations have been

refined and UML 2.0 is right now being used extensively and as part of this course we will

start with simple UML 1.X notations and then we will see what are the new things that have

happened in UML 2.0 and it still continues to grow.

(Refer Slide Time: 10:06)

Before we learn the nitty gritty of UML, let us be clear about one issue that why do we need

UML models, how does it help if we model something. The answer to that question is that

modeling is an abstraction mechanism. An abstraction mechanism is one, where we look at a

problem and then we create a simple model of the problem, the description of a problem. A

non-trivial problem maybe hundreds of pages long with various details. It becomes very

difficult for somebody to read those hundred pages and have a meaningful understanding of

what the system is required to do. In this situation, modeling comes in handy.

In different models, we capture the important aspects from a hundred page document we

distill out a few graphical models, which actually capture the essence of the system that is

required, you just look at the model and you have a very good understanding, what is

required and if you read those hundred pages you get lost in the details, you do not get to

know what exactly is required and if you do not know what exactly is required, how do you

design and we do not create one model, we create different models that capture different

aspects. Focus on one aspect, ignore the rest of the aspect and we model that aspect only and

this is the way we handle complexity by creating model.

A hundred-page document is a description of a complex system because this describes the

system entirely. We create a model that discusses, that captures some issue, some specific

aspect of the system and by looking at the model, we become absolutely clear what is

required. Just to think of a building, if a contractor is given the task of coming up with a large

building, one way is that we describe him about the building, a hundred storey building and

what are the things that happened in different floors, what will be the, how does it look like

internally and so on. But then, the contractor does not get a full idea, if we give him a

hundred-page document describing the building. We need to have a model of the building

worked out, that is we give the layout, what is the frontal design, what is the floor plan and so

on.

So, we give him a set of models of the building and based on that, he can construct the

building. The same thing here with program, just a verbal description of the system, it is very

difficult to come up with a good solution, we need to have modeling from the problem

description and this modeling can be used by the programmer to come up with the exact

solution that is required. A model in that sense we can say that it is a simplified

representation of the actual thing and it is an effective mechanism to handle complexity.

UML is a graphical modeling technique, we will be given a text description of a system, we

will create a graphical model. It will be easy to understand the model and to construct the

solution based on the UML model.

(Refer Slide Time: 15:19)

Another very basic thing that we must be clear at this point in the course, is that what is the

difference between modelling and designing, are they the same thing? Is modeling the same

thing as designing and designing the same thing as modeling? No, not really. A design is

certainly a model of the system. A design is a simplified representation of the actual code and

the code is written according to the design. But every model is not the design, we have

analysis model. Every model is not the design of the system, initially we start with an

analysis model through analysis activity, which is not a design model. The analysis model

cannot be directly translated to code or code cannot be easily written from the analysis model.

But we transform the analysis model into a design model.

So, a design is one type of model and model can be either design model or an analysis model.

An analysis model is just a model of the problem. Whereas a design model is the model of

the solution. Given the design model we can straight away have the program written based on

the design. But given the analysis model, we cannot really write the code. So, we need to

transform the model of the problem domain, that is the analysis model into the design model

and as part of this course, the design process will first create the analysis model and then we

will transform that into the design model and that will be our design methodology, which we

will discuss after discussing about UML.

(Refer Slide Time: 17:46)

In UML 1.x, nine diagram exist as I was saying that UML 2.0 was a major revision to UML

1.x and there were four more new diagrams were added, 13 diagrams and initially there are

nine diagrams, most of these diagrams have been carried on into the UML 2.x. But then there

are small changes in these diagrams, we use these nine diagrams to capture five different

views of a system. What is a view of a system? A view gives a perspective of the software

system. A perspective is basically for what purpose we use the model. For example, we might

have a user’s view.

The user’s view is, how does the system understood by the common user. The common user

understands the system in the form of its functionalities, the external behavior of the system,

what he can do with it, can he create a log in, can he carry out some operations? So, those are

the user’s view. What are the operations you can carry using the system. Similarly, we have

the internal views like a structural view, that how the system is structured and so on. So, there

are five different views of the system, we will shortly look at what are the views of the

system and we have different diagrams in UML to model these different views of the system.

(Refer Slide Time: 19:51)

The five different views are the user’ s view, this is the most basic view, because after all the

user describes the problem and we need to captures the user’s view, because that is the basic

thing that the user needs and this view once we create the model of the user’s view, the user

should be able to understand it and then say that whether that actually fits into what he was

saying. So, the user’s view is very important and invariably this is the first model that is

created, the user’s view. Because we first create the model based on the user's view get it

ratified by the user or if the user says that some changes are needed, we incorporate the

changes in the user’s view until the user agrees.

So, this is one of the very fundamental views of a system, first to be constructed in any

development process is the user’s view. The structural view, is that what is the structure of

the system, what are the classes, how are they packaged and so on. The third one is a

behavioral view, here given an input to the system or let’s say the user invokes a

functionality. How do the classes interact among themselves? How do the different object

that exist, they interchange messages and then come up with the required behavior? So, that

is the behavioral view and even in the behavioral view we have, how does the states of

different objects changes as they receive different inputs?

So, those are the behavioral views, we have a set of diagrams to model the behavioral view

and then we have the implementation view. In the implementation view, we have how is the

implementation structured? Are there packages to be deployed, what is the configuration on

those packages and so on. And the environmental view is, what are the different physical

components of the system. Are there number of processors? Are there I/O units and how are

the different parts of the solution, the program code going to deployed in these different

components. So, that is the environmental view.

(Refer Slide Time: 22:52)

This diagram, shows the different views, the five different views. The central view is the

user’s view. This is the first view constructed and the other views are constructed based on

the user’s view and the diagram that is used to model the user's view is the use case diagram

and this diagram we will discuss first in this lecture. We have the structural view modeled

using class and object diagrams. The behavioral view, sequence diagram, collaboration

diagram, state chart diagram, activity diagram these are used to model the behavioral view.

The implementation view, in terms of component diagrams, what are the different executable

components and how are these components deployed on different physical computing

elements like different processors I/O nodes and so on, that is a deployment diagram.

(Refer Slide Time: 24:07)

As you could see that there are many diagrams here. Nine diagrams in the UML 1.x and to

simplify our understanding, we will first start with UML 1.x diagrams and till what are the

changes that have been made in 2.x, class diagram we capture, what are the classes and their

relations. In object diagram, we capture what are the objects and how do they interact, what

are the relations between them. In component diagram, what are the different elements that

are grouped, the deployment diagram? What are the nodes that host the components?

(Refer Slide Time: 25:02)

The use case diagram is the behavioral diagrams, here is the user’s view and the sequence

diagram how are the messages ordered. Collaboration diagram is focus under structural

organization. State chart diagram, how the system state changes and the activity diagram how

the flow of control occurs different activities. We will discuss all these diagrams as part of

this course, that is the first thing we will do before looking at the design process and coming

in up with design solutions to a set of problems and once we do that these different diagrams

will fall into place that what exactly are the capabilities of this diagrams. What do they really

model? What are the notations used and so on?

We will start looking at those aspects in the next lecture. With this brief introduction to UML

the different views, the five different views and the different diagrams to model this views.

We will stop here and we will start with looking at the use case diagram to model the user's

view of the system because after all, that is the central view and every design process starts

with the user’s view of the system. We will stop now, thank you.

