
Object - Oriented System Development Using UML, Java and Patterns

Professor. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Lecture 38

GRASP Pattern: Introduction

Welcome to this sessionction!. In the last session,ction we had some introductory discussion

about design patterns. Let us try to continue our discussion bit of introductory discussion on

design patterns, broad idea about what are patterns, how do they help and so on and then we

will start discussing about the GRASP pattern in the sectionthis session.

(Refer Slide Time: 00:45)

In last section we have remarked that there are 3 three broad types of patterns which are in

use by software developers. The architectural patterns, the design patterns and the code

patterns which are also called as idioms.

(Refer Slide Time: 01:01)

The architectural patterns deal with the overall design, high level solutions.

(Refer Slide Time: 01:10)

Whereas the design patterns, they provide design solution to specific problems. They suggest

a class diagram and also define interaction among the classes in the form of an interaction

diagram and also we will have the object instances, we might give an object diagram, the

different roles of the classes, the collaborations between the classes and also we will give java

skeletal code for the GOF patterns.

For the GRASP patterns we will not really have the java code because the GRASP patterns

are more of common sense, design common sense and if we have those common sense,

design common sense, we can come up with good design but they do not really translate the

code or it may be not very meaningful to give code for the GRASP patterns, but for the GOF

patterns, we will discuss about 10 to 15 GOF patterns. We will have the java code for sample

uses of the specific GOF patterns.

(Refer Slide Time: 02:43)

Besides the architectural patterns and the design patterns, we have the idioms or the code

patterns. This are low level patterns in the sense that these are programming language

specific, these are not design patterns. The architectural patterns are high level patterns, the

design patterns solve specific design problems, whereas the code patterns are code specific.

They describe how to implement a solution for a given problem in a certain programming

language.

But then, these are also very useful to the programmer, because if he knows the idioms to

write code for a specific problem, he just falls back on the idiom and writes good code

effortlessly. All programmers they learn the idioms, the hard way, they keep on writing code

until they are or theyus look in the books and examples and then they find that things are

done in certain way in certain programming languages and then they start using it without

knowing that they are using an idiom.

(Refer Slide Time: 04:25)

But what exactly the meaning of an idiom? If you look up the English dictionary or a

grammar book, because grammar book will have a chapter on idiom. What does the term

idiom mean? If you look up a dictionary, it will say that it is a group of words that has

meaning different from a simple juxtaposition of the meanings of the individual words. An

idiom is a group of words that has meaning different from simple juxtaposition of the

meaning of the words.

For example, an idiom is it is “Raining cats and dogs” .i ‘It is the idiom is not simply putting

the meaning of each word here, that outside you go and find that it is raining cats and dogs.

But the implication is that it is raining very heavily. But then you have to use thiis specific

words to be able to use this idiom, you have to exactly use the same thing as it is here, you

cannot just change it and say that it is raining rats and lions.

People will laugh and that does not mean much. So, the idiom are a group of words that are

used as it is and they imply some meaning which is different from the simple juxtaposition of

the meanings of theise different words. The same thing in the programming languages, a

programmer learns idioms by reading books, it does not know that it is an idiom but he finds

that programs are written in some way and later while writing he realises that it is a good

way.

For example, to access all the elements of the array of 1000 elements in C, C++

or Java, you will write i = 0; i < 1000; i++. That is for array

traversal or looking at each element of an array of 1000 elements, you do not think

that should I use a do-while loop, should I use a while-do loop, you use the for loop by

default for array traversal and not only that you said i =equal to 0, you do not even think that

should I write i =equal to 1; to i <=less than equal to 1000;, i++i plus plus.

You straight away write i =equal to 0;, i <less than 1000; i++, i plus plus, this is a standard

idiom which all C, C++ plus plus, java programs have mastered without knowing that this is

a idiom. There are large number of idioms for any programming language which if you learn

will improve your programming skills, but then for this course this is not the focus, we will

not discuss about the idioms, we will discuss about the design patterns.

(Refer Slide Time: 808:05)

The design pattern versus the idioms, thereat are very large number of differences but then

there are some common things. One is that both idioms and design patterns, they try to solve

some commonly occurring problem. They also offer a solution, a core solution which we

mayet adapt a little bit for a specific problem in hand, but there are large number of

differences as well. The idioms, they provide a specific solution with very few variations.

For example, the array access that we are saying, is that always you start writing for i =equal

to 0, i <less than 1000, i++ plus plus with very few variations, maybe you will write i =equal

to 10, i <less than =10000, i++ plus plus, etcetc. only small variation. A and also this apply in

a very narrow context, if we are using C++ plus plus, and you are trying to do something, you

will use some idiom and for java language coding you will use some idioms. Whereas, the

design patterns have broad applicability irrespective of the programming language.

(Refer Slide Time: 0 9:39)

Now before we discuss about the design patterns, let us look at the antipatterns. The

antipatterns are also important in the sense that they describe design solutions which appear

to be good initially but later turn out to be a bad decision. This comes from the experience of

designers who use this solution thinking that these are good solutions but later found that it is

really a bad decision. If we know the antipatterns, we will consciously try to avoid those

solutions.

We will be able to recognize the deceptive solutions, deceptively good looking solutions

which appear attractive but latter turn out to be bad decision. It does not really help to come

up with the exact solution but it tells us that the solution that we are thinking of whether it is

it will turn out to be a bad solution. So, the antipatterns are also important but since our

number of hours limited, we will not really discuss about antipatterns.

(Refer Slide Time: 11:03)

But you must be clear about one thing, that the intension of both patterns and algorithms is to

help reuse of good solutions. The algorithms, some of the algorithms have surprising

solutions, which is very difficult for somebody to think of and come up. But then if you know

the algorithm, you can make use of it, reuse somebody’s solution. For example, the quick sort

algorithm or the Dijkstra’s shortest path algorithm and so on.

These are worked out by some very eminent persons in the area and for a normal

programmer, it becomes very difficult to come up with those algorithm unless he knows

them. A and therefore, the algorithms help to reuse knowledge of the experts. Same is with

design patterns, they help reuse the good solutions worked out by experts. But then, what are

the differences between the patterns and algorithms we must be aware? One is that the focus

of the algorithms is to come up with solutions which take less time, they are time efficient

and also space efficient.

But finally the objectives are different. The algorithms mainly try to achieve good efficiency,

runtime efficiency and space efficiency. Whereas, the patterns focus on maintainability,

understandability, testability and so on.

(Refer Slide Time: 13:56)

If we know the design patterns, we will be able to avoid mistakes, come up with good design,

reuse other solution what others have thought of. OnceIt also ones we know the patterns, we

can communicate well with the other professional designers in a company environment, we

can understand what others are speaking, if we do not know the pattern and somebody says

that he is using composite pattern, it will mean very little unless we know the composite

pattern.

And also, these gives the names which form part of one’s vocabulary and remember that

somebody had told that the hardest part in any programming is to come up with good variable

and function names. A and here, we will see that the pattern names really help. These are

good and thoughtfully given names and help us to communicate well, document well the

designs.

(Refer Slide Time: 15:16)

It reduces the number of design iterations, helps to improve the deign quantity and the

designer’s productivity.

(Refer Slide Time: 15:25)

And the good solutions they have come from use of abstraction, encapsulation, different

principles which we discussed, the solid principles that is the SRP, Single Responsibility,

Open Closed Principle, Least ofLiskov Substitution Principle, Interface Segregation Principle

and the Dependency Inversion Principle. The separation of concerns, coupling and cohesion

issues, use of dDivide and conquer and so on. These are all good principles and if you use

design patterns, you are implicitly, making use of these good principles because the design

patterns have been founded on these important principles.

(Refer Slide Time: 16:14)

But are there any problems of the design patterns?, w We must be aware before we start using

the design patterns. One thing is that just knowing the design pattern does not help in code

reuse. You have to make use of the design patterns but unfortunately, there is no systematic

methodology that how one would go about spotting these places where you will use the

design pattern, it will largely intuition and experience.

As you solve more problems using the design patterns, you see that you understand where

exactly to use it. Possibly this is a shortcoming of the design patterns that we have no

systematic way as to where to use a design pattern.

(Refer Slide Time: 17:11)

At the end of our discussion on design patterns, the objective is that once you know the

design pattern, your own design will improve. You will be able to use well

tested ideas and you will see that some analysis and trade off that have been done, you can

make use of that, you can describe your complex design ideas to others assuming that they

also know the patterns.

Given a design, you will be able to spot where to improve the design by using the patterns

and you can understand why some aspects of the java language and other languages are the

way that they are. We will also point out few places where these have been directly

implemented in the java programing language. You have been programming in java without

knowing the exact pattern that they have used and as you understand the pattern, it will give a

new meaning as to why you were you were so far doing somethings in certain ways.

(Refer Slide Time: 18:41)

But one thought you can think about that for object- oriented design, we say that there are

design patterns which you can understand and then use it to improve your design and so on.

But for procedural designs, hardly there are any design patterns and nobody even has

proposed a pattern, why? If you reflect on this enough you will come up to the solution.

(Refer Slide Time: 19:25)

If you reflect on this and of you will come up to the solution Tthat the object oriented

programming languages have certain features using which you can come up with good

designs and these features are absent in procedural languages and therefore, our procedural

languages it becomes very difficult, have some guide lines of a good designs other than some

general guidelines. No specific patterns are there.

The pattern solutions that we will discuss make use of inheritance, abstract classes, interfaces,

polymorphism, encapsulation and so on. A and such features are not present in the procedural

languages. This is one possible reason why there are no patterns design patterns, design

patterns were procedural languages.

(Refer Slide Time: 20:19)

Now the pattern problem all the patterns we will discuss, we will give a name to the pattern

we will discuss about the problem that it tries to solve the context in which it occurs, we will

also mention the situations where it will work and it will not work and the conditions that

must be met before we can use the pattern.

(Refer Slide Time: 20:52)

And the pattern solution will give an overview of the solution then will give the class, class

relations, responsibility, collaborations and one thing we must remember that it does not give

a concrete solution which we just pick and plug, it gives a broad solution which we have to

tailor it and adopt it to our specific problem.

(Refer Slide Time: 21:23)

And we must be clear that it is not plugged and re-used. Unlike algorithms or

librarieslibraries, we do not re-use them as it is and this are only parts it is not for an entire

application or sub-system a. And the patterns are actually communicating objects and classes

that are customized to solve some broad design problem in a particular context.

(Refer Slide Time: 21:57)

Now let us start discussing about the GRASP patterns. We said that this are the simplest but

then widely used in almost every design we do from now,now; we will be able to use the

GRASP pattern. It is a very intuitive and extremely simple. w We will discuss about 8, 9

GRASP patterns but hardly we will need half an hour that is one session or slightly more than

that. Bbut GOF patterns, we will find that there more sophisticated but that their applicability

is less than GRASP pattern.

(Refer Slide Time: 22:54)

The GRASP stands for Generalized Responsibility Assignment Software Pattern. In our

discussion so far, we have discussed about responsibility, responsibility of a class and we had

remarked that responsibility of a class is basically the method it needs to support. The uses

here isare the same that the patterns discuss a deal with which class should have what

methods. Largely based on Larman, Larman had proposed this in his book Applying UML

and Pattern but then as we have been remarking that this are actually best practices.

It is not really a solution, sophisticated solution which we make use in our design but these

are best practices if we use judiciously, it will lead to maintainable, reusable, understandable

and easy to use software. So, this the book applying UML and patterns based on which we

will discuss the GRASP patterns.

(Refer Slide Time: 24:31)

The GRASP patterns deal with how to assign responsibility to classes. Bbut then some

patterns tend to be bit vague and are to be seen as guildlinesguidelines rather than concrete

solutions unlike the GOF patterns where we have specific problems and very specific

solutions. Here, will see that theise are rather some of this are broad guidelines rather than

being real design patterns.

Responsibility we had said that this are methods of a class, but then this can be also

information present in a class. Nnot only doing but also knowing that is the data present in

the class that is also a responsibility. So, theise patterns they assign responsibility that is

which class should have something, some information and also what are the methods that will

be supported by the class.

(Refer Slide Time: 25:51)

There are 9 of these. Creator thisis deals with who creates an object. Expert, which class is

responsible for doing something like. Low coupling, how to have low coupling and increase

reuse. Controller, who handles an event may be a user request or a system event who, which

class is responsible to handle it. High Cohesion, how to keep the complexity manageable.

Polymorphism, how to handle behaviorbehaviour that varies by the type of the class. Pure

Fabrication, how to handle a situation when you do not want to violate high cohesion and low

coupling?

Your design has quotation and low coupling and you want to avoid. You do not want to

violate theise principal high cohesion and low coupling, how do you go around and handle

the situation and that is given by the pure fabrication pattern. Indirection, how do you handle

direct coupling between classes.

A and then finally the low of Demeter which basically do not talk to strangers that is how can

a class avoid communicating with unrelated classes or ununassociatedassociated objects.

