
Object - Oriented System Development Using UML, JAVA and Patterns

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 50

Composite Pattern - II

Welcome to this lecture! In the last lecture we were discussing about the Composite Pattern, very

important pattern. If you know the pattern you can effortlessly come up with a good solution to

the problem and if you are not aware of this pattern you would struggle, make many iterations

and with lot of prompting maybe you can come to the right solution and therefore it is good to

know this pattern.

(Refer Slide Time: 1:14)

At the end of the last lecture we were discussing about the applicability of this pattern and we

commented that this pattern is applicable when there is a path whole hierarchy of objects. This is

the first requirement that there appears to be a tree like hierarchy. But then that is not sufficient

or enough to use the pattern just because there is a tree hierarchy.

The other requirement is that the parts are created dynamically and formed in two groups. That

is, we can form groups from primitive elements and then form larger groups from primitive

elements and existing groups and still larger groups and so on. Otherwise if the second condition

is not there that we form larger groups at runtime then using this pattern is an overkill, let us look

at an example.

(Refer Slide Time: 2:19)

Let us say we have a pothole hierarchy here. A car consists of many doors, many wheels, battery

and engine is a hierarchy but should we use the composite pattern here? No, here the groups are

not formed dynamically, there is a fixed structure here, there is no dynamic forming of groups.

So, applying the composite pattern here will be an overkill and make the design more

complicated than required because the problem is very simple.

Similarly, let us see that there is hierarchy here, a university contains many schools and each

school contains many departments. Now, what about this? This is also a hierarchy and school

may contain many departments some schools and the university may contain many schools and

so on.

But again, we will not apply the composite pattern here, because we do not form the groups here

dynamically, this is a fixed structure here. If you see the problem here that we have a program

written where we have some groups here called as blocks, they contain simple elements or other

blocks and form larger blocks and so on.

The program contains some blocks which contain simple statements, we can form larger blocks

by using the simple blocks and simple statements and still larger blocks using the other blocks

and simple statements and so on. This is the situation where the composite pattern should be

used.

And these two places if we try to use the composite pattern that would be an overkill, the simple

class structure is presented here is enough, we do not need a composite pattern here, because we

dynamically do not form larger groups and group containing more groups and so on.

(Refer Slide Time: 5:24)

Now, let us see the use of the composite pattern in Java GUI, that is Java swing, those who are

not very familiar with the Java swing there is a Java user interface. The JPanel is a part of the

java swing package, it is a container that can store a group of components and the component can

be primitive or composite and the main task of the JPanel is to organize the component.

As the problem states, can see that, it is straight application of the composite pattern in the Java

swing package, the composite layout here contains some primitive elements like two buttons and

there is a center button and then we can create a more or a larger composite using this and so on,

let us see the code here.

We have a container north which is a JPanel and we define the flow layout for that and then we

add a J button here, button 1 and then to the north which is a container or a composite we add

button 2 and then we create a container south and this is again a JPanel and then we are to the

south label Southwest and then we are Southeast.

And then in the JPanel over all, overall JPanel which is new JPanel here overall, so to that we

add this north which is a composite and also we add the primitive element, a center button, so

Southwest and Southeast these are composite and then the final one we add the north which

contains, which is a composite of two buttons, we add the center button and also we add the

south. And then to the frame we add the overall. So, we can see here that we are grouping here

elements and adding to a composite forming larger composites and so on, this is an application

of the composite pattern.

(Refer Slide Time: 8:24)

Now, how do you declare the methods to handle the children in the abstract class? Because if we

add the children in the abstract class then these are only useful for the composite, just see here

that the component is the abstract class and should we add the children management operations

on the component?

Just remember that the children management operations are useful only by the composite, the

leaf they do not have children and they should not implement these operations. Would it be a

poor programming practice if we have the children management operations defined in the

abstract class? What do you think? That leaf will not have any use for them and would it be a

poor programming?

There is a tradeoff here, one is that whether the client handles all the elements in the design

similarly or he has to do anything separate? So, there is a tradeoff here, that there is a violation of

the design principle that we are trying to define some operations in the abstract class which the

leaf has no use for them. And the other way we are trying to have a uniform operations defined

for the client.

(Refer Slide Time: 10:22)

If the child management methods are moved from the abstract class to the composite so they will

become different basically, then it looks like more elegant but then the primitive and the

composite get different interfaces so you can see the tradeoff here, one is that we are trying to

debate between the elegance of the design and also from the clients convenience whether it

appears uniform or not.

(Refer Slide Time: 11:02)

We will go for client’s convenience, and we will sacrifice little bit of design elegance and we

will have typically support the client management also in the abstract. So, now let us look at an

example, let us say we have a restaurant menu. The menu is grouped, there are some primitive

menus which are vegetarian, non-vegetarian, there are Chinese dishes, there are English dishes

and so on, under that there are primitive elements.

So, the menu has different sections, now we want to have a solution, a design solution to this

menu we can straight away use the composite pattern, the menu component is abstract class

where you can add remove display menu, the menu item is a primitive one and the menu

contains many menu components, the manager interacts with the menu components.

(Refer Slide Time: 12:25)

Now, on the implementation side, for the composite menu how will it store the children? A good

solution is to use a ArrayList and then we can add, remove, etc. very easily. Now, let us examine

how to use the print function, let us say the manager wants to print the menu.

(Refer Slide Time: 13:00)

So, the class menu implements menu component, menu component is the interface and then the

display, it prints, it uses an iterator and then for all the menu components it calls the print as long

as there is a next element it just calls the print.

(Refer Slide Time: 13:35)

And for the primitive one, it just displays the price, name of the menu, price and some

description. So, the primitive element just displays this and the composite menu invokes the print

of the primitive elements.

(Refer Slide Time: 14:00)

Now, let us do another exercise, let us say we have a file hierarchy, a Unix type file hierarchy,

where a directory can contain files and other directories. Look at the root directory it contains

some of the files and some directories. And the directories in turn can contain more directories

and files. So, what will be the solution here?

(Refer Slide Time: 14:42)

Again it is a composite pattern your folder is the interface and then it can contain primitive files

or it can contain directories. The directory is the composite, folder is the component which is the

interface, the directory contains many children some of the children can be directories or there

can be primitive files.

(Refer Slide Time: 15:14)

Now, let us say we want to change the problem little bit and say that some of the primitive files

can be like text files, image files, video files and so on, so how do we change our design? So, this

is again the composite pattern, here we have many times of primitive files, text file, image file,

video file and so on and then the composite here that can contain many files some of them can be

text file, image file, video file and also the directors.

(Refer Slide Time: 15:54)

But what will be the object model? The object model is that we start with the basic leaf level

objects and see that how they are formed into composites, the larger composites and so on, it is a

tree hierarchy form here. We can take a specific example, let us say we have files f1, f2 in a

directory called as d and then d1 contains d and another file f3 and so on, so this is kind of the

object diagram that what are the objects contained in the composite objects.

(Refer Slide Time: 16:58)

Now, let us do one more exercise, let us say a program block can contain simple statements or

other program blocks and then we can form larger program blocks by using these primitive

program blocks, other statements and so on. So, what will be the class structure for this? Please

try out.

If we know the composite pattern we can straight away apply here, the abstract class here or the

interface class here is the statement or we can give some other name here if this name is not very

we can call it as an element or something if that makes it more understandable because statement

appears like a concrete one, make it more abstract, we might call it as a element, program

element. And the program element can be a leaf element like a statement or can be a block, block

contains many elements, each element can be statement or block.

(Refer Slide Time: 18:30)

Now, let us do one more exercise, we want to develop a class design where we want to handle

components, electronic components which are assembled into boards here and each board can

contain many smaller boards and so on. Typically, an electronic circuit where we have some

primitive circuits like capacitor register and so on, we form large components and that and so on.

And here our design should let designer form components using primitive components and still

larger components using primitive components and some of the composite components and so

on. You can realize that this is a straightforward application of the composite pattern if we know

the composite pattern we can solve it effortlessly, please try to draw the class diagram for this

problem.

(Refer Slide Time: 20:00)

Here the solution, the key to the solution is that we have to define an abstract class that

represents both primitive and the container and we will have operations like move, copy, resize,

etc. that should be applicable to the primitive objects as well as to the composite objects and also

there will be some operations for managing children like add, ungroup, etc.

(Refer Slide Time: 20:32)

So, this is the solution here, this is the general idea of the composite pattern and for this specific

case, we will have the basic elements like register, capacitor, etc. and then one board design

which contains many basic elements and other designs, other boards.

(Refer Slide Time: 20:58)

This is the object diagram where a composite; may contain only the primitive ones or it can

contain some primitive ones and other composites.

(Refer Slide Time: 21:18)

Now, there are some alternatives to this the way the solution is done for this pattern. One is that,

once we form the group, a component does not know what it is part of. So, basically a

component knows its children but not vice versa. The other one is that the component knows

what it is part of, so the children also knows to which it belongs.

Then you might wonder that what is the advantage of the second one, why should a component

or a basic element know to which it belongs, what would be the advantage of that? The

advantage is that if the same element is part of many components we might save by repeating

that across all the components because it may belong to multiple components.

So, here the component may be in multiple composites and it can be accessed only through the

composite. The other case the component can be in only one composite and it can be accessed

directly.

(Refer Slide Time: 22:52)

So, when the components are part of a single composite, if A is part of B, if and only if B is

composite of A, but then here we can have duplication of information and the problem will be

that how to ensure that references to the components to composite and composite to component

are consistent if we add composites, delete components, delete composites and so on it may

become inconsistent.

(Refer Slide Time: 23:43)

To ensure consistency, the composite should be able to enumerate components, the component

knows its container and in the presence of add, remove operations to add a component to a

composite we must update the container of the component and there should be no way to change

the container of the component, just to ensure the consistency when we add a component we do

the operations consistently that in the composite we add it and also in the child we are the to

which it belongs, and when we delete we also do the same operation consistently.

(Refer Slide Time: 24:31)

So, this is the add child in the composite we not only add child here to the composite but also we

set the parent for the child class.

(Refer Slide Time: 24:45)

Another example here about the Java GUI. The problem here is that how we can add a widget to

another for example a panel to an applet?

(Refer Slide Time: 25:04)

You might have done this kind of programming without knowing that you have been using the

composite pattern. The applet, my applet extends the java applet and here you add some

primitive elements like label, button and then on a panel this is a composite the panel you add

sub label, sub button and then finally add the panel to the applet.

(Refer Slide Time: 25:38)

The Java GUI makes use of the composite pattern profusely just look at the AWT components

here taken from the Java class diagram. So, see here that the component is an interface and there

can be primitive components here like button, canvas, etc. or there can be composites here, just

see here a direct application of the composite pattern here you can notice here, that there are

primitive elements and then there is the composite here. And then each composite can be a

window, a panel frame dialogue and so on.

(Refer Slide Time: 26:41)

The Java swing a small difference here, here these are also containers as you might know that in

the Java swing; these are also containers the J button, J label and so on the small difference in the

diagram here. So, here every widget is a container and every container is a component.

(Refer Slide Time: 27:17)

So, we have completed our discussion on the composite pattern, now let us look at another very

important pattern called as the adapter pattern.

(Refer Slide Time: 27:34)

The intent of this pattern is that how to convert the interface of a class to the interface expected

by the users of the class. A class might have many users and they might use to calling some

methods but the class under consideration has different methods. So, how do these incompatible

classes work?

Let us look at an example which is a non-software example. Let us say you have been using

some appliance, let us say mobile phone’s charger and you went to USA and you had this

charger, your charger in India is like this but there you find a socket like this, so how do you

make your charger work in USA? You use adapters, so this is the adapter that fits into here and

you can plug this into this and if you go to different countries UK and so on, the charger, the

adapter for the USA will not work in UK, there you need a different type of adapter so you might

have a universal adapter which fits into the socket of any country you visit.

The same thing happens in software; a class invokes methods of another class but then you want

to use a different class which has different set of methods. So how do you make these two

classes work? So, that is about the adapter pattern we are almost at the end of this lecture, we

will continue from this point in the next class. Thank you.

