
Object-Oriented System Development Using UML, Java and Patterns

Professor. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture No. 51

Adapter Pattern - 1

Welcome to this session! In the last session, if you remember, we had discussed about the

Adapter Pattern. We just started to discuss the adapter pattern and we look at the details of

the adapter pattern in this lecture.

(Refer Slide Time: 00:35)

The intent of the adapter pattern is to, as is written here, convert the interface of a class to the

interface expected by the users of the class. Let me just explain the meaning of this. Let us

say we had a Class A, which was invoking the services of class B. Now, the class B had some

methods, let us say P, Q, R etc. So, A used to invoke services of B by calling the methods P,

Q and R. But then we had another class C, which we wanted to use, we choose a better class

in terms of performance, functionality and so on. But then the method available here are

different. B had P, Q, R, but C had L, M, N and so on.

Now, we want A to work with C, without changing the code of A. How do we achieve this?

We need to use an adapter. So, we had A, Class A using the services of class B. But now we

want to use the services of class C and as it is it would be difficult to use the services of class

C, because we do not want to change the code of class A and C has methods L, M, N and A

was calling the methods P, Q, R.

In a first glance they look like incompatible classes, A is calling P, Q, R and C is providing L,

M, N. The adapter pattern, the intent is to make these two incompatible classes to work

together meaningfully. Let me just give a non-software example to make the adapter class,

role of the adapter class clear. Let us say we visited a country and we had a mobile charger,

which we were using in India. This is the charger as shown in the figure above and we were

using the charger in India, where the socket was different.

Now how do we make this work with the country that we visited? Let us say USA has this

kind of a socket as shown in the figure above. How do we make our mobile charger which

needs a socket of different type to work with the socket here in USA? We need an adapter.

The adapter fits in here and this can sit under adapter and we can make it work. But what

about we visited different countries like let us say Australia, UK, European Union and so on.

They all have different sockets and we have this charger, mobile charger.

Now how do we get our mobile charged, we need different types of sockets one for Australia,

another for European Union, one for the United States, another for UK but those are too

many. If you visited dozen country, you would have to carry dozen adapters. It is too

cumbersome. But can we have a universal adapter that will simplify the problem. In fact, that

is what everybody does, when going abroad, they carrier universal adapter. It can fit into the

socket of any country and here, your appliance can use this socket.

The role of the adapter class is very similar to what happens here in the non-software

situation, where we are using an electrical device and trying to plug it into the socket of a

country.

(Refer Slide Time: 06:04)

The adapter pattern is actually a wrapper pattern; we call it is as a wrapper pattern. Because

here, the adapter is an object which sits around the class that we are trying to use, the object

that we are trying to use, it is wrapper pattern. There are many wrapper patterns where an

object, the client uses the object like adapter and the adapter internally passes on the request

to another object, that is a wrapper pattern and here the problem that the adapter pattern tries

to address is convert the interface of a class into one that the client expects.

The client class uses the interface P, Q, R and the server is having the interface L, M, N and

the adapter will convert P, Q, R into element. When P is called, the adapter will internally

make a call to L, method L makes classes work together; without adapter they cannot work,

like you went to USA, did not have an adapter and you cannot really charge your phone, your

phone gets discharged, but you cannot help, because of the incompatible interfaces and also,

this pattern is very useful to provide a new interface to existing legacy components. That is

we have some old packages, classes that make call to some other classes. Now we have got

some new components available and making these old components work with that we need

adapters.

So, it is a very important pattern useful in software maintenance, extensively used and also

whenever we want to work to classes having different interfaces. If we look at the nitty gritty

of the adapter pattern, we will see that there are two variants of the adapter pattern we will

discuss about both the variants of the adapter pattern, one is called as the class adapter and

the other is called as the object adapter.

In the class adapter, the main mechanism that is used is inheritance and interface

implementation. There are two main mechanisms used; implementing an interface and using

inheritance. On the other hand, the object adapter here the main idea used is delegation and

also implementation of interface. As we will see that the object adapters are much more

common, request you to listen carefully from now on and identify what is the advantage of

object adapters, we will discuss about both these. Please look at the structure of the class

adapter, object adapter, their working and so on and please identify why the object adapters

are much more common. We will address that question at the end of this lecture.

As we have already said, the client used to use some package. This is the interface of the

package and that used to support methods like P, Q, R. But then we have a new package

available, which is much more efficient, better and so on. But then the methods supported are

L M N, we want to make the client work with a new package without changing the code of

the client. That is, whenever the client makes a call to P, or Q or R, a call has to be made to

the new package with L M N and that is what will the adapter do.

We can think of the adapter is a wrap around on the server. Whenever the client makes a call

to the adapter, using P, the adapter makes a call to the server using L, if the client makes a

call using Q, adapter makes call to the server with M and so on. So basically, it translates the

client requests into the one expected by the server.

(Refer Slide Time: 11:50)

Now let us understand the main idea behind the adapter pattern and also let us get used to the

terminology used. The interface that the client is used to which is accustomed to the interface,

we call it as the target and then recall the new package as adaptee and then we have the

adapter which supports or it has the old interface, the targets interface, but then it makes call

to the new interface.

So, let us understand these terms target, which is the interface that the client used earlier. The

adaptee is the interface of the new package and the adapter has the interface of the old

package, but it makes call to the new interface, that is the adaptee's interface. Now, let us try

to visualise that in terms of the non-software example. So, please identify what do we call

this? Is it a target adaptee or adapter?

This is the old interface, you have gone to USA with this tea kettle and trying to us there and

we call this as the target, this is the target interface and then we went to USA found that this

is the kind of socket available. So, what do we call it, we call it as the adaptee and then we

have the adapter which has the interface, target interface, but it makes call to the adaptee

interface. It sits on the adaptee interface and then the tea kettle. The plug here fits in, so this is

the terminology the target, the adaptee and the adapter. So, the client uses the target interface

and then this is the adaptee and this is the adapter.

(Refer Slide Time: 14:48)

The adapter pattern as we have already mentioned, helps two incompatible types to

communicate when the client expects some interface, and that is not supported by the server

class, the adapter comes into picture. It acts as the translator between the two types and 3

main classes involved in the class structure of the adapter pattern. One is the target. This is

the interface class that the client uses.

So, this is the target interface and then the adapter is the class that has the, that implements

the target interface and makes call on the adaptee interface and adaptee is the class with

operations that the client wants to use. So, the client makes call to the adapter, the adapter has

the target interface and then it makes call to the adaptees interface.

(Refer Slide Time: 16:07)

Now please recap the terminology. What do we call this, the non-software example, this is

the client expecting the target interface. But then we have the adaptee here and we need the

adapter which has the target interface, but then can make call or sits on the adaptee interface.

So, this is the adapter, this is the adaptee and this is the target. Now with this knowledge, let

us look at the exact working of the adapter pattern.

(Refer Slide Time: 17:07)

As you were saying that there are two main types of adapter pattern, one is the class adapter

and the other is object adapter. In the class adapter, inheritance is the main mechanism used.

Here, the adapter is a subclass of the adaptee and also the adapter implements the target

interface. So, this is the class adapter pattern and in the object adapter pattern delegation is

the main idea here and the adapter holds a reference to the adaptee and makes a call to the

adaptee based on the reference that it has and the adapter implements the target interface. So,

this the object adapter pattern or the main idea of the object adapter pattern and this is the

main idea behind the class adapter pattern.

(Refer Slide Time: 18:19)

Now let us try to explain the working of this pattern. Using a simple example. Let us say we

have a class set. It supports various operations on a set, add, delete, etcetera. Now, let us say

our class for set implementation has poor performance. So, this is the set class that we are

using. It had some interest. But then the set in class was not really very efficient and we got

hold of a more efficient set class, but it has a different interface. So, this is the new set class

having a different interface.

Now, we do not want to change the application code, but we want to make it work with the

new set. How do we do it? We use the set adapter class. It has the same interface as the

target. But then it translates any call to made on the target interface into the new sets

interface.

(Refer Slide Time: 19:40)

Just to explain the class adapter pattern, let us say we have a target which use to support the

method quack. The client class used to call the method quack. But then we have another

different class we want to use, which is the adaptee and the method here supported is Cock-a-

Doodle. The solution to this is that we have to write this adapter class. The adapter class

implements the target interface and is a subclass of the adaptee. So, by being a subclass of the

adaptee, it has the method Cock-a-Doodle available here, internally and it interface, it

implements the target interface.

So, for the quack method here, whenever the client calls the quack method on the adapter, it

will internally call the Cock-a-doodle method of the adaptee. In the object adapter, on the

other hand, the adapter implements the target interface that is quack. But then it holds a

reference that is this adaptee and the adapter are associated, the adapter holds a reference to

the adaptee object and whenever the client calls the quack on the adapter, it calls the Cock-a-

Doodle on the reference of the adaptee that it internally stores. So, these are the two main

ideas in the adapter pattern, the class adapter and the object adapter.

(Refer Slide Time: 21:56)

Now let us proceed with our example that we are discussing about the old set, the old set

class had, the methods add, delete, cardinality of the set and whether it contains an object. So,

that is the target, this is the target interface, add, delete, cardinality and contains. But then we

got hold of the new set, which is much more efficient. But instead of add, delete, cardinality

and contains, it has the methods insert, remove, size and contains. We do not want to change

the code of the client and we want the client to make to work with the new set and therefore,

we will have to write the adapter.

(Refer Slide Time: 23:01)

In the object adapter pattern, we just store a reference to an instance of the adaptee class, we

first create an adaptee object and store the reference in the adapter class and whenever there

is a call to the adapter, it just calls the corresponding method of the adaptee object. So, this is

the class diagram. The adapter implements the target interface. So, for the add, we need to

provide an implementation and the implementation of add, we will just write insert on the

adaptee reference, it holds a reference to the adaptee.

We can, show this as the association or aggregation. Whenever there is a call to add by the

client in the implementation of the adapter will make the call insert on the reference of the

adaptee class that internally stored.

(Refer Slide Time: 24:18)

Let us see the code here. The client side we first create the adaptee object. So, A is the

adaptee object and then we create the adapter and we pass the reference of an adapter, so that

internally the adapter can store the reference and then in the test method, we call t.add and

check whether the corresponding insert method of the adaptee is called or not. The target

code is just interface target and public void add.

The adaptee code is class adaptee and public word insert and not shown the exact code, but

just an overall idea of how it works. The target interface as add and the adaptee has the

method insert and the adapter implements target and it has a reference to the adaptee object

and in the constructor, it takes a reference to the adaptee object and store it internally and

then, whenever the client calls the add, it internally calls adaptee.insert.

If we have understood this example, then we know more or less everything about the object

adapter pattern. We are almost at the end of this lecture. In the next lecture, we will see the

same example the, set and we will try to have the class diagram for the class adapter and also

we will see the Java code for that. Thank you.

