
Object Oriented System Development using UML, JAVA and Patterns

Professor Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 53

Bridge Pattern I

Welcome to this lecture! In the last lecture, we had just started to discuss about the Bridge

Pattern. The bridge pattern is an extremely useful pattern, helps to simplify the design makes

it more maintainable, extendable, very popular pattern. Let us look at this pattern. If you

remember, we are discussing towards the end of the last lecture, the structure of this pattern

with the help of some examples, let us just recollect the structure of the bridge pattern that we

were discussing last time.

(Refer Slide Time: 01:00)

We had taken the example of a shape, various types of shapes; geometric shapes, line,

triangle, circle and so on and then these are to be drawn on various platforms. On the

desktops, mobile phones and so on and then we had discussed about the class hierarchy that

kept on becoming more and more complex as we used different application like animation or

we used a different platform and the solution to that we had drawn the bridge pattern.

Here, on the left side of the pattern, we have the abstraction hierarchy. These are the general

concepts which typically do not change too much. On the right side, there is another

hierarchy which is the implementation hierarchy and here, it is more likely to change as new

platforms become available, new applications become available and so on and he had said

that the number of classes here, if we use bridge pattern is quite manageable, understandable.

But if we do not use the bridge pattern, just use a class hierarchy as it is; then the number of

classes grows very rapidly and becomes very complex. Here, the client class interfaces with

the abstraction here, the abstraction hierarchy and then as the client invokes the methods and

the abstraction, maybe to reshape, maybe to edit, move and so on.

If required, the shape calls the corresponding concrete implementation class. We will see the

details of this class in using more number of examples. But this was the main idea that we are

trying to discuss in the last lecture.

(Refer Slide Time: 04:02)

So here, the main idea is that we do not use a single hierarchy where both there is a change to

the abstraction or change to the implementation. These are handled uniformly the same

hierarchy. Rather, in this pattern if we use the abstraction hierarchy is separate from the

implementation hierarchy and any changes to the implementation hierarchy we just make that

change without affecting the other hierarchy. So this side, the left side is abstraction hierarchy

and the right side is the implementation hierarchy.

(Refer Slide Time: 04:53)

But then, why is the name ‘bridge’ given to this pattern? The name bridge is given because

this pattern provides a bridge, a bridge between the abstraction hierarchy and the

implementation hierarchy. So, this is the abstraction hierarchy where the terms line rectangle,

these are invariant with respect to the specific implementation whether it is a desktop,

whether it is a smartphone, whether it is an embedded application, whether it is an animation,

we still call those as line and triangle because these are application domain terms.

On the other hand, on the implementation domain terms we have high resolution, low

resolution, transient view and so on. So, this pattern separates out the abstraction hierarchy

from the implementation hierarchy and provides a bridge between the abstraction and the

implementation which is basically an association or aggregation relation which helps the

application class to invoke the methods of the implementation class.

(Refer Slide Time: 06:38)

We can redraw the structure like this, the same one. Here the abstraction is an abstract class

and it is supported, many operations are defined, the refined abstractions are concrete class,

these are application domain classes. The client invokes the abstract class here to which the

corresponding concrete class is bound and then the implementation is an interface and

depending on the type of platform and so on there are different implementation classes here

and the correct implementation class should be bound to the abstraction.

(Refer Slide Time: 07:49)

If we look at the participants of this pattern, we have the abstraction the refined abstraction

which are basically concrete classes. In the application domain the implementation is an

interface and then there are concrete implementations which are basically classes defined on

platform variations and so on.

(Refer Slide Time: 08:26)

The abstraction defines an abstract interface which the client uses and it maintains a reference

to the implementer and that is how the bridge is established. The refined abstraction is a

concrete class which extends the interface defined by the abstraction.

(Refer Slide Time: 08:52)

The implementation or the implementer this defines the interface of the implementation class

and the concrete implementer are the concrete classes which are implementation specific and

the implementer interfaces.

(Refer Slide Time: 09:13)

Here as the client invokes a method on the abstraction, it may do some work and also if

necessary forward to the implementer object, the correct implementer object. The clients only

interface with abstraction class, they do not interface with the implementation class and

abstraction plus forwards in a request to the implementer class.

(Refer Slide Time: 09:48)

Let us take a few examples to understand the applicability of this pattern. First, let us look at

Window example. In the Window example, let us say we had two window types, the

Microsoft Window, Ms Window and the Mac Window but then, after some time we had the

need for icons and we defined a special type of window called this icon window.

But then the icon window must be implemented on both the MS Window and the Mac

Window and therefore, we sub-classed the Mac Icon Window, made it MSI Icon Window

and the Mac Icon Window. And similarly, we might have other platforms for example,

Android platform and then we not only add class here Android Window but also we will have

to add the Android Window here. Similarly, Unix Window will also have to add here. So,

each time we make a change, multiple class additions are required. There is a single class

hierarchy and we have not separated the abstraction from the implementation. That is the

problem, we have not use the bridge pattern, to be able to use the bridge pattern we must

identify what is the abstraction here and what is the implementation.

The abstraction are the different types of windows, for example the icon window, the

application window, these are the different types of windows and their implementation

whether it is in the Microsoft platform Mac or maybe the Unix platform, Android and so on

those are the implementation. If we consider that then the application of the bridge pattern

becomes very simple.

(Refer Slide Time: 12:18)

We have the abstraction on the left side there are two main types of window concepts. One is

application window and one is the icon window. Each icon has its own window and the

application window has many icons and other things. So, this is one type of window and this

another, these are two basic types of windows, but then this can have implementations and

various platforms.

So, we have the window implementation that is interface and we have various

implementations of the window implementation that is Microsoft window implementation,

Mac window implementation, Android window implementation, Unix window

implementation and so on. So, we have separated out the abstraction hierarchy from the

implementation hierarchy and have successfully applied the bridge pattern.

(Refer Slide Time: 13:39)

Now, let us look at another example. We are given these hierarchies which some designer has

come up. So, he has the thread scheduler class here and then he sub-classed it into preemptive

scheduler and time sliced scheduler and then there is a Unix preemptive thread scheduler, the

windows preemptive thread scheduler. There are two types of preemptive thread scheduler;

one for the Unix platform and another for the window platform. Similarly, for the time sliced

thread scheduler will have two sub-classes; the Unix time sliced thread scheduler and the

windows time sliced thread scheduler. But later as maintenance was required, it was used for

some time and then new requirements arose.

(Refer Slide Time: 14:51)

And then we need to support the Java platform and once we try to support the Java platform,

we saw that we not only should have a Java JVM preemptive thread scheduler, but also the

JVM time sliced thread scheduler. So, the hierarchy becomes more and more complex as new

changes occur to either the abstraction or the implementation concepts, we need to apply the

bridge pattern, separate out the abstraction and the implementation and provide a bridge

between that.

Now, what is the abstraction here? The abstraction are the different types of thread

schedulers, it is very easy to see here there is simple example that there are two basic types of

thread scheduler; one is the preemptive scheduler and the other is the time sliced scheduler.

But then their implementation is different on different platforms. For example, Unix windows

JVM. So, these are the implementation domain and this is the abstraction domain.

(Refer Slide Time: 16:18)

If we separate that out, we have the abstraction hierarchy on the left side and the

implementation hierarchy on the right side. The number of classes has reduced and not only

that, if there is a change on the abstraction side, we have a new scheduler or we have a new

platform, we just make change, small changes to the corresponding class hierarchy, we do not

change; need to have too many sub-classes added for just one simple change. Now, let us

look at one more example.

(Refer Slide Time: 17:07)

Before that from our examples, let us make some observations. If an abstraction has several

implementations that is we have defined some abstraction ideas for application, but then it

can be used on various platforms and so on and then the programmer is typically tempted to

use inheritance to solve the problem, just add some classes in the inheritance hierarchy.

But then, the problem that occurs is that the inheritance binds the implementation and

abstracts together permanently and it becomes very difficult; the solutions are too complex,

any small changes require too many changes. But then, what is the design principles does this

kind of solution violet that a programmer to for any small change that is on the abstraction

hierarchy or the implementation hierarchy, just make sub-classes on the same class hierarchy.

 If you look back to the previous lectures, you will see that the, it violates the single

responsibility principle, violates the single responsibility principle.

(Refer Slide Time: 18:53)

Now let us see what a programmer had to tell as he became more experienced and observed.

What he has been doing, he had this to say, he said, as a beginning object oriented analyst I

had a tendency to solve the kind of problems by using special cases, taking advantage of

inheritance I loved the idea of inheritance because it seemed simple, new and powerful. I

used it whenever I could. This seems to be normal for many beginning analysts. But it is

naïve given this new hammer, this new tool somebody has learnt very simple tool everything

seemed like a nail. Very correct and that is how many of the application solutions become

complex because of the overuse of inheritance tend to violate the single responsibility

principle and must keep in mind the bridge pattern and make use of that and given an ugly

design, we should be able to refactor by using the bridge pattern.

(Refer Slide Time: 20:17)

We must use the bridge pattern when we want to avoid a permanent binding between

abstraction and implementation. Also, the implementation may be selected and switched at

runtime. So, the application can run on different platforms seamlessly. Both the abstraction

and their implementation are extensible without implementing the clients, even the code did

need not be recompiled.

(Refer Slide Time: 20:54)

Now let us look at another example. Let us look at the circle shape problem. The problem is

that we have a circle; we have a package where we can draw a circle and also we can do

various manipulations on the circle for example, we may stretch it, we may contract it, we

may change the colour, we may change the fill pattern and so on. But also the circle can run

on the browser. The circle can be displayed on the browser on a standalone application on the

mobile phone, and so on.

You say, again straightforward application of the bridge pattern. So, here the abstraction and

the refined abstraction is the shape, circle shape and the concrete sun circle shape where we

can have various operations like resize, change fill pattern, change colour and so on and then

the implementation hierarchy where we have implementation on web browser, smartphone

and so on.

So, here, these are the classes which participate in this pattern, the abstraction which is the

interface, refined abstraction which is the concrete circle class. Then we have the

implementation which is the interface and then the concrete implementations which use

different drawing APIs for different platforms.

(Refer Slide Time: 22:52)

Now, let us try to see the code, the Java code. Here on the implementation side, the drawing

implementation is interface; it only supports draw circle given the centre and the radius x, y

and the radius it can draw it on a web browser that is one implementation another is on

smartphone, another is on specific application and so on. So, this is the simple code for the

interface drawing implementation.

(Refer Slide Time: 23:41)

And then we have the concrete implementations which implement the interface drawing

implementer. So, we have the concrete implementer A, implements the drawing implementer

and here for each of the methods in the interface we provide the definition and similarly for

the other concrete implementation, we have the implementation for the draw circle.

(Refer Slide Time: 24:14)

Now let us look at the abstraction hierarchy. Here we have the interface shape. Here we have

the abstraction domain terms or the application domain terms like draw, resize, change fill

colour, fill pattern and so on. Now, this is a simple interface shape.

(Refer Slide Time: 24:48)

Now let us look at the concrete shape which is the circle shape, circle shape implement shape

and then it has constructor where we provide the specific concrete implementation. The

drawing API is an argument on the constructor and that is how the bridge is established and

here in the private drawing API, we store the argument provided in the constructor and then

we have the other application specific, abstraction specific methods.

Wherever required for implementation specific methods, we call the method of the class,

specific class and the implementation hierarchy. Here we are calling the drawing

API.drawCircle which is the drawing API is the implementation class plus concrete

implementation class and we are calling the draw circle on that.

Whereas the other methods are on high level abstraction specific methods. For example,

resize by percentage, change fill pattern, change circle colour and so on. Simple code

example for the bridge pattern.

(Refer Slide Time: 26:43)

Now, this is the client code. In an array we create many circles, two circles we have created

and we have given two different APIs for those two circles and the client just interfaces with

the abstraction domain class which is the shape and then we call the shape resize by

percentage, it will be handled by the method in the abstraction class without really invoking a

method on the implementation class.

Whereas we might also invoke, the client might also invoke some methods which will require

calling a corresponding method on the implementation hierarchy. We are almost at the end of

this lecture we will just stop here. We will look at some broad conclusions on the bridge

pattern and then we look at a different pattern. We stop here. Thank you.

