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Welcome back to the lecture on normal distribution and decision boundaries under the course

titled pattern recognition. In the last class you would have heard about concepts of base decision

rule which form the basis of the base classifier okay. And what are the three components in the

expression  for  the  base  when  you  come  toward  the  probability,  posterior  probability  for  a

particular sample.

The three terms one of them is the class prior, evidence okay. Now when you actually want to

use the base criteria for performing a pattern classification task, you need to actually compute the

probability densities for samples, for a particular class. And for that you need certain models, one

of such commonly used models, not only in the field of pattern recognition,  but other many

scientific and engineering disciplines is the normal distribution.

So  we  will  start  with  details  of  normal  distributions  and  see  that  how, using  this  normal

distribution and base decision criteria we come up with certain decision boundaries for the task

of classification, for a particular task. 

(Refer Slide Time: 02:03) 



So let us look into the slide and find out what normal distribution is. So the normal or a Gaussian

distribution is very commonly occurring function in the fields of probability theory, but it is also

very wide applications in many other fields. Examples of course include, pattern recognition,

machine  learning  which  we  are  involved  in  this  course.  Artificial  neural  networks,  soft

computing, digital signal processing, other fields of vibrations, graphics, any sort of modeling

which you need.

Normal distribution is a very commonly used function to module certain distribution. So we will

first see the formula of the normal distribution, and then see certain properties of the distribution.

And then we will proceed towards ways by which this distribution can be used for classification

task, which involves certain distance measures and classify theory. 

(Refer Slide Time: 03:15)



It is also called a BELL function, the Gaussian function is also called a BELL function or a

BELL curve. And then formula of the normal distribution is given by this, it is a one-dimensional

function, although this formula holds for multivariate random variables. So we will see that later.

So for random variable X or for variable X, you see two terms, the denominator term on the first

here is basically a normalizing term.

And the expression is usually given by this. You can see two parameters in the distribution, one

is the μ which is called the mean or expectation, some staticians may say median or mode, but

we will hence forth use the word mean of the distribution. There is another parameter σ which is

actually more important in the normal distribution which is called the standard deviation, and

square of the standard deviation is actually called the variance σ2.

So I repeat again, σ is the standard deviation and μ is the mean for that particular function. So it

is a product of an exponential function of this feature divided by the normalizing term which is

here. Now we will see some examples of this BELL function and the curve, some plots which

will show you the importance of or the significance of these two parameters. Of course, mean μ

is very simple to interpret, it is like an average value.

So whatever be the average value of a set of random numbers or which is represented by X

correct, the mean will represent that. How does σ that is the standard deviation control the nature

of the BELL function or Gaussian function. 

(Refer Slide Time: 05:37)



Let us look at this example in the slide. The reference of this particular plot is available from

Wikipedia which is given below. So you can also have a look at this, but now observe there are

actually four different curves in four different colors. And three of them have the same mean

value 0.  So the mean value 0 at  this  point is  where the three curves in blue,  sand and this

yellowish curve is what you get grayish yellow.

One of the curves has a nonzero mean which is -2 as you see here in the top right, and that is

given by the magenta curve. So that is how you can see this, how the mean value μ helps you to

position the curve, what is the effect of σ, while the values of σ2 are given four different values.

And for the first three curves when the mean is 0, you can see that the curve in yellowish grey

curve has the value of variance which is the least, because 0.2 is the variance, standard deviation

will be root over that.

What about the one is sand color, the standard deviation of the variance is equal to 1, so that is

the normal curve which you also define that when σ=1. And then what you also have is the one

in blue where the variance is  5,  which is the wider curve.  You also have the nonzero mean

Gaussian function when μ=-2, the corresponding variance is 0.5 which you see here. 

So if you compare these three curves having the mean at  the center, you can see that if the

variance is large the function has a large spread or width, or larger set of nonzero values, lesser

the  value  of  variance,  more  peaky or  sharp  or  lesser  is  the extent  or  span or  width of  this



function. So what we just learnt now is, if you increase the variance of the, or standard deviation

of the Gaussian function, you will have a larger span, the wave function will have a larger span

or width.

If you have a small value of variance or standard deviation, you will have a much sharper or

peaky nature of, almost if you take a very, very small value of σ that is the standard deviation,

you will tend to actually create an impulse function, very narrow width that is for smaller values.

For larger values, larger width, but lesser height. 

What is the normalizing term being in the expression, if you go back to the slide look at the

normalizing function the value of the function P of x or the Gaussian function is equal to this

when  this  exponential  value  will  be  equal  to  1  only  under  one  condition  this  value  of  the

exponent will be equal to 1 when will it be the value of the exponent will be = 1 look back the

expression and think and tell when will with this term be equal to 1 when the value of x = the

value of name.

Okay so you can see from the curves back now that when the value of x touches the mean it the

value of the function P(x) is also at it is maximum and then maximum value is dictated by this

left hand side term here 1 by this is denominator where you have a  σ that means for a larger

value of σ which as a larger width you will have a lesser high for a smaller value of σ when you

have a lesser span you will have a very large peak like an inverse.

What is actually happening is that the area under the curve is always same the normalizing term

ensures  that  area  under  the  curve  is  =  1  you  can  have  a  Gaussian  function  without  the

normalizing term the nature will be the same but the peak value always start at 1 it will not have

that normalizing factor  of having a area under the curve = 1 and hence the peak changing with

the values only the width will change okay we will keep on looking at few more examples as we

long.

(Refer Slide Time: 10:55)



Now this is a nice empirical rule which is sometimes causally called the 68- 95 and 99.7 or

sometimes called 99.8 some books will use 99.7 or 8 rule in which a normal density curve or

sometimes also called the Gaussian function okay we will interchangeably use hence forth in this

lecture normal density or Gaussian function it satisfies the following property which is often

referred to as the empirical rule.

What does that mean there are 3 parts to this whole it says that 68% of the observation that

means you making density observations which is creating the density they fall with 1 standard

deviation of the mean that is between μ –  σ so look at this curve of the plot of the Gaussian

which is a colored in yellow from mean which is = 0 in this case to -1 and μ + 1 this images also

you will get in certain websites if you start looking at properties or empirical rules of Gaussian

function.

Okay let us go look back again so if you sum up the area of this yellow region form σ – 1which

is here to σ +1, σ -1 to σ + 1 the total area under the curve will be 68% of the total that means the

total, total area of the normalized Gaussian curve actually this a Gaussian with σ = 1 and how I

will complete that in movement with another property. This is a Gaussian function with σ =1 did

you have it in the previous slide σ =1.

(Refer Slide Time: 12:43)



You look at this the same curve okay σ =1 this is the one the blue color is been drawn here.

(Refer Slide Time: 12:55)

But we have shaded in yellow the area under the curve between σ -1 to σ + 1 and it is 0.68 that

means 68% total is = 1 what about something more if we go to some σ – 2 sorry μ - 2σ I repeat



again if you start from μ - 2 σ since σ = 1 we starting from -2 here you can see so – 2 to + 2 you

look at this range here so you are starting from μ -2 because σ= 1 to μ + 2 you have 95% of the

area curved with this range.

And if you still go one step further between σ – 3 to + 3 it seemed that you have all most curved

the  entire  under  the  curve a  negligible  part  is  left  beyond it  is  just  0.3 % so 99.7% of  the

observation of this area falls between μ- 3σ to μ + 3σ whatever be the value of σ this holds good

the curve which you have seen are for σ=1 opr standard deviation = 1 only okay but this is valid

for σ okay let us look back the curves I again I repeat.

So μ+- σ if you want to say it in a very gradual simple manner then that area is about 68 or 70%

mean +- 2 σ is about 95% is and almost close to 100% is μ+ - 3σ so that means if you taking

observations from mean -3σ to μ+ 3 σ you are actually almost capturing all the samples are all

the observations much less than 1% is outside that range and that is why this range of 6 σ some

books may taken even 7 σ.

So this is called 6 σ, 7 σ rule empirical rule where you take the interval of +-3 σ or + - 3.5 also

some  books  we  will  find  that  this  actually  contains  almost  all  the  energy  information  or

observations which you are trying to model using this Gaussian function.

(Refer Slide Time: 15:19)



This is  another curve form other source from other document the expression is given at  the

bottom and you can see the value 68, 95, 99.7 and 9.8 + -3 σ you want to go little bit beyond

again μ is consider to be 0 you look at the range + -1 σ this range + - 2 σ and then – 3 σ to so σ

here okay it curves the entire range can you guess why this value of the peak is marked as closed

to 0.4 0.399 but you can safely approximate it to 0.4 what could be the bases of that it is not a

difficult answers you can think for a few more minutes and tell me based on last 5 minutes of

whatever I have discussed and guess who what is that value of 0.4 representing.

Of course it is the peak of the Gaussian but what sort of the calculations is giving that is the

simple question 1/ √2 that is correct because σ=1 I did mention that this is the plot for standard

deviation = 1 so I will leave it as an exercise for you to use your calculator to check the value of

1/√2π we will get the value of 0.4 having very close 0.398, 2.4 is what you will get good.
(Refer Slide Time: 16:53)

So what you have just observed now for a normal distribution almost all the values lie between

or within 3 standard deviations of the mean the couple more statements to made before you move

on to properties of Gaussian distribution a random variable with the Gaussian distribution is said

to be normally distributed and is called a normal deviate if the mean = 0 which you see at the end

and the standard deviation of variance = 1.

This distribution is called the standard normal distribution or unit normal distribution this is just

form normal so somebody says what is a unit normal distribution or standard normal distribution



it is the Gaussian function with σ=1 that is all okay and you can use the expression give in the

last few slide to compute the curve okay you will see the animation now coming you in the slide

in which actually it shows the Gaussian function with increasing values  of points on the curve

this is not actual observations made for the Gaussian we will come to that environment because

this density function is basically probably.

So in  the  number  of  points  are  plotted  more  because  this  is  an  important  thing  to  observe

although you will not appreciate it right now because it is possible that in many applications of

pattern recognition and signal processing you may have a very few observations sometimes to

make. And often to may be that statically the number of values which are using for calculations

either to compute a probability function or density function or may be an histogram let us say the

number of points which you use to make the observations.

And the number of discrete values are the sample which you get from the density function it is

better if the number of points are more then you have much more can see the value 10 = 5 look at

the values just more then we saying the Gaussian function is not showing up in this smooth way

as it  is expected to okay this  is  just  a nice animation to show you that a most examples of

probability and statics we expect the values of the samples to be large number more larger to get.

(Refer Slide Time: 19:35)

Let us look at some very nice important some more properties one important properties which

we are seen now is that the effect of the standard deviation larger or wider okay and lesser height



smaller the value smaller the special  extent more peak it is okay, but these are imagine trust

importance so the mean is  μ and the standard deviation  σ is positive if you go back into the

expression mathematically it is possible to actually have a negative value of σ mathematically

possible it does not alter the value of the expression within the exponential because you have a

square term.

But what will happen is if σ is negative the probability density becomes negative so it is basically

a meaningless effect to choose a value of standard deviation which is negative okay deviations

have a certain value has to be positive and density functions are usually positive and we will

soon go add and use them as distance functions so they have to be all positive good, so do not

worry about negative so we are any way has to be positive σ first fall it is symmetric around the

mean.

We  have seen that  from the curves got the function is  symmetric  it  is  uni-modal  it  is  first

derivative is positive 1 the value of x is less than the mean and it is negative and it is more than

in exactly 0 only at mean μ, so the first derivative as a nice property connected to the secondary

derivative is a very interesting property which says that the Gaussian fraction has two inflection

points basically it is second order from located to one standard deviation away from the mean so

at mean μ -  σ and + σ you will get two inflection points.

May be some features scope of analysis I usually the derivatives are the Gaussian but I leave this

is an exercise for you to actuate the derivatives of the Gaussian first second even higher but at

least  stand in first and second order and just a good deal of application in many analysis of

pattern recognition as well as image processing as well as image processing people let up edges

with the help of derivatives of the Gaussian function which basically become age operators okay

so the property.

Which we only understand here is now that the first derivative is positive for negative values of x

and negative for positive values of  x 0 only at the mean and it has two inflection points at these

values it is log concave a function satisfies certain property to be a concave function and not

getting into those details but you can find that out from certain concepts of algebra setting.

Concave function find that out if the log of that function is also concaved it  is called a log

concave function so this Gaussian function has that special property you may not use all of these



properties okay the last of the most important part why it is also popular is that it is infinitely

differentiable look at the last sentence infinitely differentiable and it in deeds super smooth of

order  to okay infinitely differentiable  that  means we are only talking  about first  and second

derivatives but I tell you that you can take even higher derivatives of the Gaussian.

As high as you can think and this gives scientist lot of many varying capability with the analytics

with the help of Gaussian function if it is if you are able to model it that is the main reason of it

is  popularity  number,  the  function  stratifies  certain  criteria  to  be  smooth  again  like  the  log

concave of the concavity property of a function that is the function concave when it is smooth

there are certain inequalities are criteria to be find that and there is a super smooth property of a

curve of certain order b time is the order β is considered to be 2 the Gaussian function satisfies.

Certain properties curve is expected to be smooth it is better but in this case the last two hour

important properties but they are probably would not be used in a great extent in our theories I

think  it  is  infinitely  differentiable  is  1  property  sometimes  high  derivative  of  the  Gaussian

functions are used that the first and second derivative are very, very important.

(Refer Slide Time: 24:49)

Yeah this is the expression of it is first derivative and we have taken mean to be 0 and σ = 1i

leave it as exercise for you to do the same when there is a non zero mean that means derive the

expression of the derivative 1 and 2 derivative of the Gaussian function only mean is non zero

and value of the center deviation is not equal to and you should be able to write it terms of the



Gaussian function like we have done it, that should be also possible if you look back so in this

case mean is 0 and σ is = 1 but if it is not those parameters will come in the expression look at

the second derivative of the function.

We can actually yourself from this see px is always positive look at the second derivative of the

expression here px is always positive you know that from the function this component will be

equal to 0 at only two values of x what are those two values I reap at if you look back into the

expression this component will be equal to 0 at only two possible values x = + or – σ to be very

preside because in this case σ = 1 what are those let us go back to the previous slide is even at

this point we just talking about.

Inflection points this is where the second derivative is 0 and it changes sign is sometimes called

0 cross in point also and it occurs at + and – σ here since σ = 1 the value will so you can almost

blindly close here all is and replace this by x2 – σ2 is not it more general the nth derivative is

given by this  particular  h  of  nth is  given as  the marmite  polynomial  of  order  and this  is  a

common function used in interpolation in the field of comparative graph x okay not get into

details by  the hermite polynomial of order n is a very common function used in many braches of

science and engineering specifically car fitting in the field of interpolate graphics interpolation

this taken.

(Refer Slide Time: 27:15)



So carrying the discussion on Gaussian or normal density function if you look back into the

screen now the expression of one dimensional Gaussian function or normal density function is

given. Let us look at the density function in two dimensions or what is called as the Bi-variate

normal density function.

So you have two variables now instant of only x you have x and y, instant of just one standard

deviation you have σx and σy that means standard deviation along x and y respectively you have

the corresponding means as well νx mean along x direction are the x component μy is for the y

component. In addition you will also have a correlation coefficient so μ stands for mean with the

corresponding subscripts indicating the direction or component.

Standard deviation σ stands for standard deviation with its corresponding components and you

have the correlation coefficient ρx,y which is the correlation coefficient between two variables x

and y, okay. There  is  relationship  between  the  correlation  coefficient  and the  corresponding

standard deviation and the joint covariance term between the two variables x and y we will have

a look at that now.

(Refer Slide Time: 29:02)



The covariance of x and y is defined at the expectation of the two variables subtract with their

corresponding mean subtracted that means x-μx represent the values of x centered around 0 the

same with respect to y. The covariance indicates how much an x and y vary together we will see

that with some examples after some time and the value of this covariance term depends on how

much each variable tends to deviate from its mean as well as also how it depends on the degree

of association between x and y.

So a larger relationship between x and y of course a mathematical relationship that means what

type of relationship you may have well let us say if the value of x is rising will the value of y also

rise or will it fall down or will it remain constant, uniform does not change. There may be many

different possibilities and if it rises or falls does it do that steeply or gradually so these three

different conditions along with their  rate of change forms the value measuring the degree of

association which is actually call the covariance term and it has a very strong relationship with

the correlation coefficient which we saw inside the bi-variate normal density function, look back

into the slide.

So the covariance indicates how much x and y vary together if you remember this it is quite

sufficient with the time being it also depends on the degree of association between x and y. The

correlation coefficient between x and y as the function of the covariates term σxy is given by this

expression and in such a case you rewrite the covariance term using this.



So it is something like a normalized change okay you have the σx and σy is coming with the

denominator and the correlation coefficient is actually a scalar quantity the value always lies

between – and +1 indicating the degree or relationship variance or association between x and y.

This  is  an  important  formula  which  you  remember  that  means  you  can  actually  rewrite

covariance as correlation coefficient multiplied by the individual variances or standard deviation.

Standard deviation we will precise, I repeat again covariance of x and y is correlation coefficient

and multiplied by the individual standard deviations of x and y, okay.

(Refer Slide Time: 31:59)

This is another way by which you can write some books you will find that you will write the

expression  of  correlation  coefficient  using  expectations  of  x  and y separately  or  using  joint

expression in  this  particular  form you can use any one of these expression.  This correlation

coefficient is quite important because we would like to know how to variables depend on each

other.

In our case in the field of pattern recognition we must remember that each of these variables are

feature dimensions okay, so it is something like how one feature is related to the other one, okay

are they joint as related or they heavily correlated or not, okay. The correlation coefficient and

the covariance terms will be actually holding that information so you may need to estimate these

parameters of correlation coefficient or covariance from the data itself and that is why we were

looking at this particular formulas. 



So again looking back to the slide what does correlation coefficient tell us? It is basically the

cosine of the angle between the two vectors of course in three dimensional space but you can

take D to be 2 when you are talking about only x and y of the samples drawn from two random

variables.

So  if  we  have  two  random variables  x  and  y  we  were  talking  of  just  two  vectors  in  two

dimensional space and of course the data must be always be normalized or it is centered as it is

called a shifted by the sample means so as to have an average of zero. This must be done for all

analysis of classification and pattern recognition tasks.

(Refer Slide Time: 33:52)

This figure is a geometrical illustration of correlation coefficient values in 2D there are three

rows of set of points or instants or samples drawn from a particular data and depending on the



geometrical  arrangement  which  you see  the  corresponding correlation  coefficient  which  you

have are given next to the figure.

Look at the last row as a typical example, the correlation coefficient is 0 what basically means

that in some sense there is no relationship that means that there is no relationship between the

two independent variables x and y, x and y are independent in some sense you can say. In the all

the  other  cases  you have a  value  of  1  here which  basically  means  that  this  is  a  strong co-

relationship between x and y no correlation again.

And a negative value of correlation that means when x is increasing it seems y is decreasing

okay, you look at from the center if x is increasing in this direction the y is decreasing, this will

give you an idea of why you have a negative value of co-relationship the same thing here. the

value is not equal to -1 but still you can see that when x is increasing the y is decreasing and y so

add.

So if x is decreasing y is  increasing so there is a negative correlation shape here there is  a

positive, because both are either together increasing or together decreasing okay, the first gives

an idea why you have positive values of correlation coefficient here on the left hand side and

negative values here. So this gives you an idea about how the correlation coefficient may accept,

now look at the value here which is 0.

(Refer Slide Time: 35:48)



There are other examples of density functions which exist in the field of probability theory and

statics,  but  I  talked  well  before  hand as  to  why Gaussian  is  popular  in  the  field  of  pattern

recognition you know let me work signal processing other fields of mathematics and engineering

as well the couple of important properties is this nice smoothness of the function is derivative

existing up to and almost an infinite order and so on so forth which may not and it symitrisity

many other nice properties which may not exist for other density functions.

They exist they can be used but you may not have the nice advantage of having mathematical

manipulations or expressions done using no Poisson distribution functions will have just look at

them a few of them some of them are popular but not that much to the extend as what moist

mathematicians and scientist used in the field of signal image pattern recognition so on and so

forth the Gaussian function.

(Refer Slide Time: 36:57)    

Well this is a Poisson distribution it is almost one sided and this is one parameter λ this is a

binomial distribution it has two parameters n one is the value of n the other is the value of k then

you have a Cauchy distribution where you have like similar to the Gaussian it is almost similar to

the Gaussian except there is no exponential here but you can see the nature and look at the mean

here the first three Are curves are for mean 0 and the last one is for the value -2 this is this curve.

And you have I think almost similar values is what we have used in our Gaussian function when

we took the examples the Cauchy is very close to the Gaussian but its expression is different.



(Refer Slide Time: 37:55)  

A Laplace function which is very peak in nature that means let us go back if you do not want this

smoothness at the top for a particular density function, of course you could ask me a question

now when do we need this function when do you need such a problem well let me tell you in

spite of the Gaussian function being the most popular and the most commonly used ones it is

possible that real data sometimes may not actually follow the Gaussian distribution in spite of the

expectations of all theories scientist and engineers.

Specifically they are even use to model noise but unfortunately noise does not always follow the

Gaussian distribution,  any real left it  I  want to do for casting for the weather, stock market,

elections, temperature okay see sight current whatever the case may be you can use also some

model but real data usually does not follow always a very nice distribution and sometimes quite

follow a from the Gaussian distribution. 

Say it is good to have some other functions available at our disposal if we can use them and one

such case which we are discussing now is that if you do not want the smoothness at the peak of

the function let us say you want to peak in nature like this you can use a LAPLACE function



which has an exponential without a square trump you can see this is similar the Gaussian but first

of all it has a parameter here but there is not square term which gives is this peak in nature here.

This is a double density expression which is expression wise similar without the square term

again and I would encourage you to read other concepts if you have not gone through center

limit theorem uniform distribution geometric distribution so on and so forth. So after we have

studied a few examples of the properties of the Gaussian function in 1d and 2d let us now look in

to the case when a Gaussian distribution is use to model a distribution in very high dimension. 

What about the case when you have data in very high dimension you remember the lectures

when we introduce the concepts of pattern recognition clustering classification that we have to

extract lot of feature from the data, the number of features which we extract from a particular

signal could be a few tens to a few 100 to a 1000 in certain cases, so you may need to compute

density distribution for features which are very large in dimension not only one and two.

So  we  need  to  have  an  expression  now  remember  we  had  a  expressions  of  the  Gaussian

distribution in one d and 2 d I leave it  is in exercise for you to write the expression of the

Gaussian distribution in three dimension we have p of x you had p of xy I leave it an exercise for

you to write pxyz one simple extension will be instead of µ you had µx µ y, so you will have µ

µy and µy or you can write it as µ 1µ 2 µ3 three dimensions some books will follow 1 2 3

because you can write using this in this is rather than the x y z.

You will have the individual standard deviations or variances what are they? You had σ, then you

had σ x and y you will now have σx σy σz or σ1 σ2 σ3 you did not have a correlation coefficient

in one d you had one correlation coefficient in 2d, in 3d how many do you expect? I repeat again

try to extrapolate the idea when you are doing  in 1d you did not have any correlation because

you did not have you cannot correlate if you just have one dimension data you have to correlate

with something else correct.

So when you have 2 dimensions think about two dimensions x and y okay or diction one and two

you had a  ρ  x y or  a  ρ  1 2 if  you think these are  the two direction.  Now you have three

dimensions, x y and z you should be able to tell me how many correlations I can establish, three

you have to take pare wise combinations that is what we did in 2d there only one option available

okay.



So three of them now the question comes is there was three of those individual variances then

three of those means expressions will be little bit complicated and it will get more and more

complicated if you go to four or high dimension, so it is believed to have one expression which

can handle in generally very large dimension d and then see if it can be generalized to one d 2d

and 3d let me tell you it will not be easy to write the expression in 3d from 2d although we have

seen  what  are  the  extra  terms  and  parameters  required  in  3  dimensional  data  for  normal

distribution correct okay.

But it would not be easy to extend that logic because you have to fit those correspondingly you

can attempt to do that and the attempt will be more and more difficult for higher dimension, so

let us have a very closed form nice compact expression in d dimension and see if we can write

the two and the three as well which I leave it as an exercise for you, though we are looking at

now if we look back in to the slide.

(Refer Slide Time: 44:03) 

You will have a multivariate case data that means in dimension you have random samples taken

along is dimension is dimension could be a feature you know what are the features we are talked

lot about them in our earlier classes. And for d dimension you have a d dimensional vector all the

mean vector you see the notation use to show them that it is the vector okay, you can actually put

the marker here also to indicate that this is also a vector, this is also a vector this is also a vector

these are individuals scalar means along the corresponding directions.



So no problem in one d you will have just µ1 in 2d you will have these two µ1 µ2 or µx µy

which we saw three dimensions you will have µx µy µz or µ1 µ2 µ3 now remains the most

important point, the variances and co variances put together which is nicely we did not have to

worry about this is one day because we just had one mean term and one variance. 2d we wrote an

expression okay, 3d onwards for larger dimensions it becomes really complicated but there is

close form expression and to do that we introduce matrix called the co variance matrix which

will have all the terms which we are talking about.

It is usually denoted by σ but in some books we will find s as a symbol also look back into the

expression, first of all you will see that this the symmetric manner both the matrix are symmetric

either using left or right does not matter, this is the symmetric matrix as you can see here the

individual variance are along the diagonal you can write it in this term as you like or in this

whatever you feel.

Basically  it  is  product  of  two individual  standard  deviation  giving  you the  correspondences

variances  and  you  have  a  set  of  off  back  ground  terms  which  is  duplicated  because  it  is

symmetric okay, so if this is d x d matrix can you tell me how many off term will be there? Not

difficult if it is d x d cross matrix off diagonal terms we will get totally, let us start with the total

of diagonal terms that is very simple it should be d2 – d/ 2 because it is symmetric matrix.

d2 – d/ 2 if d = 1 dimension then the value will be 0 correct there is no term there d =2 d 2 – d/ 2

how much it will be there is just one of the term, we have that single ρxy just one term d = 3 we

talk about this sometime back, so you can see that this is the generic form of co variance matrix

which can handle all these cases, d 1 2 or very large dimension and this is the form which you

must remember.

So  it  is  the  symmetric  matrix  and  the  diagonal  terms  have  the  certain  significance  the  off

diagonal  terms  certain  other  significance,  the diagonal  terms  contain  the  individual  standard

deviation or the variance along the corresponding directions 1, 2, 3, so forth along the directions

and the off diagonal terms are simply having as many possible corresponding, that means ijth term

in that matrix will be giving you the co relation between i th and the jth directions and from that

you can relate it to the co relation position ρij or σij.
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So using that co variance matrix this is the d dimensional normal density that function is given

by this expression I was telling you this is the co variance terms and you look you are actually

using the inverse of the co variance matrix is given here, x and μ are defined in the previous slide

we will go back and have a look at it, so that is the data that is the mean vector and we already

talked about x – μ that means centre shifting it making the mean 0 this is what this will do and of

course the normalizing factor here.

You can either use this expression in the form of a matrix or you can write it terms of this as well

which is ∑ of certain terms consisting of elements sij of the matrix which is the I j th component

of the inverse of the co variance matrix, so the co variance matrix inverse as to be taken and then

it has to used in this expression to compute, this is the d dimensional normal density functions

and I would request you to almost attempt in due course of time few lectures to almost memorize

this by heart.

As much as  possible  because  it  will  be used thoroughly in  our analysis  in  many places  for

clustering, classification, distance measures, and we will talk about more of that later in the next

few classes as well okay, where you just need to remember that there is the normalizing term due

to determinate of this co variance term the dimension d is also here 2π and x –μ σ there is the T

here okay.



You can actually remember this but this is the best thing to follow because hence forth we will

keep on concentrating on different properties of this co variance matrix or it is inverse in various

forms and see the net result of classification. The co variance matrix almost says about what the

classification task you are trying to solve okay you might have heard somewhere in our earlier

discussion I am going to hear a lot more in future about linear decision boundaries and non linear

decision boundaries.

Class  separate,  distance  between the  clusters  we talked about  it  in  very  beginning using an

animation all those will get reflected in that co variance matrix, it will hold all the information of

the data except the class means information is now here in this 2 terms but this co variance

matrix will hold all the information about the way the data varies along each heavy direction and

relationship between the two directions. So please remember this expression here as given by

the.

(Refer Slide Time: 52:17)

It will repeated in the next slide as you can see here and special case where d = because this is

where  we  talked  about  the  bi  variated  normal  density  where  the  X  is  given  here  x,y

corresponding mean vector also μx, μy and the co variance matrix will be at 2 x 2 because d = 2b



and as  promise  earlier  you have the variance from the diagonal  of terms what  are  these co

variance terms.

So if the dimension d = 2 you can see this d = 2 and the √ will cancel out you can simplify this

expression 2 x2 it is very easy to compute and what will happen here is the inverse of this matrix

will it is also not difficult to compete 2 x 2 matrix easy to compete. Using the σ substituting it

here you get back this expression which we had a few slides back what was the expression the bi

variated normal density with the co relation, co efficient.

And the corresponding to 2 different means I did tell you that this √ 2π will be available here the

determinate of this should be sitting here and this is the exercise will show that and rest of it take

the inverse substitute to it this is what you will get. Actually it is a normalizing term here also

which will appear out of the determined of this projects because inverse will also have factor

with terminal I leave this analytical derivation to you as a home task because this will help you to

get used to this explosion help you to understand and also memories as much as possible a task

of this expression of the normal.
 
(Refer Slide Time: 54:36)

Three dimensional distributions for gossoons.



(Refer Slide Time: 54:39)

This is a picture it shows a wire frame diagram of two dimensional functions it is a very standard

method of representing surfacing in the field of computer graphics so this is basically called

mesh diagram of such a surfacing.

(Refer Slide Time: 54:58)



In 2d and what you see here are with that corresponding Gaussian function you are seeing at the

bottom what are called as contours of lines which are at a certain distance as defined by the

density function for the d=2 that means we are talking about two dimensional case the Gaussian

distribution function or the Gaussian density function and these circles are intersections of this

Gaussian surface with horizontal plane of the value.

Given by the corresponding distance that means if I take this blue circular the outside which

appears in the ellipse because of the projection basically it is a circle on that surface all the points

in this surface are at equal distance is like a circle oversell it has to be equal distance from the

center  which is given like the new and that distance is some value which is  defined by the

covariance term.

And the density distribution function okay so closer this circular is to mean you are at a lesser

distance or at a higher density you can think that if you have a Gaussian surface and find an

intersection  for  a  planner  horizontal  plane  with  that  corresponding  surface  you  will  get  a

controller those conclude are shown below this surface at they are radically concentric  circles

with as you get out of the new away from you are talking about larger.
And larger values of distance from the mean given by this particular expression now you see

what is have done is just switch the logic this expression is same as the expression which we got

in the previous satellites go back this expression what is have taken out is this particular it is



within the exponential and it can be easily taken it is a simple mathematical operation like as for

example if you take a log of this expression.

Let us see equally in fact give after sometime next class you take a log of this expression you

will get this expression now which you can actually is the key because it converts it actually

contains the covariance matrix of dimensional its inverse and this is within the expansion I have

now taken that term and say it is a distance d of a point x I repeat again it is distance d  of a point

x from the mean it is given you can suppress.

This term and use the rest of these two terms and you will also get a distance value which is

typically what you will get is the I repeat again if you suppress the covariance term and take only

these two and compute the distance you have this simple expression of distance which is called

equilibrium distance very simple and that is a special case when the covariance matrix is matrix

that is a special case covariance.

The  individual  variances  are  equal  to  1  and  the  half  diagonal  term is  0  all  the  correlation

coefficient all  the coefficient are all o the diagonal terms which are sitting in the covariance

matrix remember that expression which is asked you to almost memories as well this term it is an

anti matrix now this is what we have  so now simply we have new format distance function sorry

I  repeat  again  we have moved from a distribution  to  a  distance relationship  is  very close a

coherent term is there is both.

The distance from the mean is there in both only the normalizing term in the exponent is taken

out to one because there in the expression of the Gaussians or normal distribution or density

function in this case the distance is just we take that term within the exponents where it seems to

give an exponent expression for a distance of a point that means what is the distance of this point

to this point well you can measure it in two dimension x, y then u1, u2 or vx, vy.
And compute that is the equivalent distance but if you want to take distributions of point into an

account then you must use the expression of expanding the covariance functions as given in this

slide this  expression if  you take it  actually  give you the correct  distance  in  cooperating  the

density  distribution  and the  distribution  of  points  and these  sort  of  the  distance  measure  is

actually called in the field of statics.

And estimation theory as well as pattern definition the Mahalanobis distance determined by the

covariance matrix and these lines are usually quadratic functions well in this case they are acted



to elliptical or circular but they could be any other quadratic functions so we have just introduced

the concept of distance from the normal distribution and we will  now see how this distance

placing a very important role in the job of classification.

Where you will now bring in concepts of what where did you have probability distribution for

the classification talk so far we have disused one algorithm earlier that professor Moorthy that

was the base rule for classification it had probability functions over density functions classifiers

class conditions distribution if some of them are one of them are a Gaussian function if you put

that concept now then we can derive distances out of rows to put inside the based decision rule

so base decisions rule will.

Now become a pattern based on the distances instead of comparing probability we will compare

distances we will consider this a nice correlation between the truth probability and distances

because the expression of the Gaussian function allows you to do such operations in the already

they can now repeat if we look back this is the expression we are talking about which contains

the covariance matrix it was the probability distribution function.

And  it  is  now  taken  as  the  distance  now  we  will  see  using  as  a  distance  how  it  can  be

appropriated in the classification function that will give us the distance it will give a decision

rules and it will give what are called decision boundary decision  regions based on these certain

discrete functions and you may get linear boundaries sometimes linear analysis next round of

discussion we will flow these and we will go towards linear a non linear decision boundary as

well as discreet analysis  which we are sonly lead as direct analysis we will stop here.

Online Video Editing /Post Production
K.R.Mahendra Babu

Soju Francis
S.Pradeepa

Camera
Selvam

Robert Joseph
Karthikeyan
Ram Kumar
Ramganesh

Sathiaraj

Studio Assistants



Krishankumar
Linuselvan

Saranraj

Animations

Anushree Santhosh
Pradeep Valan .S.L

NPTEL Web &Faculty Assistance Team

Allen Jacob Dinesh
Bharathi Balaji

Deepa Venkatraman
Dianis Bertin

Gayathri
Gurumoorthi
Jason Prasad

Jayanthi
Kamala Ramakrishnan

Lakshmi Priya
Malarvizhi

Manikandasivam
Mohana Sundari
Muthu Kumaran
Naveen Kumar

Palani
Salomi
Senthil

Sridharan
Suriyakumari

Administrative Assistant

Janakiraman.K.S

Video Producers

K.R. Ravindranath
Kannan Krishnamurty

IIT Madras Production 

Funded By 
Department of Higher Education

Ministry of Human Resource Development



Government of India

www.nptel.ac.in

Copyrights Reserved 

              

                
  
                      

                    

    
 
     

            

http://www.nptel.ac.in/

