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So this is where we stopped at the end of the last class and we were actually looking at the

significance of the equations here for learning or updating the weights based on samples from

two different  classes  and based on the  inequalities  here  whether  you are  in  the  positive  or

negative side of the hyper plane you adjust the weights based on the sign of the direction of the

tests training samples okay.



And we also discussed about the significance of the learning rate parameter as it is called and

you start  with the larger value and keep on reducing them as time progresses and you stop

actually when the iteration converges and which basically means that these conditions are not

met typically the condition of convergence in a learning algorithm is not based on the these

inequalities.

Basically you find out the errors in predicting the classification of samples as given during the

training and the error is very, very less or does not change over a certain amount of time you stop

the iteration of the convergence to be very, very specific.

(Refer Slide Time: 01:33)

In the case of a feed-forward neural network where a back projection learning algorithm is used

the objective is to basically minimize an error term okay. So this objective of the minimization of

the error term is also along similar logics were given a certain weight WK at any point of time of

an iteration you adjust the weight and get the new weight WK+ 1 the change in the way WK is

basically given by this particular expression and member as shown in this diagram the change in

the weight is along the direction of the vector of course it could be the negative side as well

depending upon which class you are working on and the least mean square learning algorithm.

That the derivation which I am skipping here which says that the change in the way it should be

ETA which is the learning rate parameter multiply by the direction vector of the sample multiply

by an error term this is something new which you have not discussed earlier remember the logic



is the same that means you change it along the direction of the vector the ∆WK is a vector as

given here it is parallel to or along the direction of the test sample which is here multiply by the

running mate parameter and there is another scalar quantity here which is an error term defined

by this what is this error term indicating.

You look at the difference between the desired value of the discriminate function and the actual

function of classification and then decide typically you want this you stop when they are in this

error term is 0 this error term is 0 when the corresponding value of this G which the discriminate

function here is the same as a desired value in this case in our case it  is simply positive or

negative but if in a multi-class situation this could actually indicate a value so when this value of

the error.

That means the desired value for the classification required for the discriminant function G and

the actual value of G which is X multiply by W was given in earlier class if this value is large

you move you actually have a larger value of ∆W K because this value will then be larger if this

value  is  negligible  or  small  the change will  be also small  so you see there are  three  factor

direction given by X K learning rate parameter which reduces over time and the error.

So the error is large you move larger in larger steps if the error is small you move with smaller

steps and of course as iteration proceeds the iteration learning rate parameter will also go down

forcing you to anyway move at smaller steps when do you converge now you have an error term

K you look at the error term and say for all training samples if the error term is less or some of

their terms is less our individual terms are small or they do not change over time then you can

stop.

Because you have reached the solution space you have is the solution space because this term x

multiply w is actually equal to DK and are very close to that giving to a null or a very, very small

so this is the essence of the learning algorithm in case of a Perceptron as well as the feed-forward

Neal neural network in general and this is applicable with minor modifications for a multi-layer

feed forward neural network algorithm as well where the learning algorithm is actually called the

back propagation learning law BP neural network back professional network very casual it is

called but actually the error is actually back propagated the signal is moving from left to right

from the signal input towards the output.



But the errors are propagated back which is there a top this is an example of such an error term

which is propagated back to know how much of the weights should I adjust depending upon the

error the error is back propagated but the signal flows forward from the input x the weights to the

output to the next layer and so on in a similar case it is done so it is applicable for a Perceptron

but  a  Perceptron  you can actually  use the  simplistic  form which  you have discussed in  the

previous slide without the error term as well but if we have a layer of you know different you

know Perceptron forming a single layer or multiple layers with different number of new neurons

or Perceptron as they are called to form a multi-layer feed forward neural network learning law

of this type is adopted where the errors are propagated back.

They are measured multiplied with an learning rate parameter ETA then how the weights are

modified always along the direction of the training sample this is what we have learnt to the end

of the last class and also today that it brings you in the weight space in the weights page towards

the positive zone of G for of course the correct set of samples.

(Refer Slide Time: 06:38)

We move at and go back to our linear discussion of linear decision boundaries.



(Refer Slide Time: 06:43)

Remember in the last class we talked about that we will not discriminate between and boundaries

and discriminant functions okay now we will discriminate it exactly formerly earlier we were not

discriminating much one discriminant function is discriminating between one class with respect

to the other or the rest and that is also acting as a decision boundary now we will actually do is

what we will do is take to discriminant functions both of them being linear what are these two

discriminant functions for two separate classes I, n, j 1and 2 A and B examples again I  repeat

fruits and flowers cars vs trucks aircrafts vs. trains.



Let us say or two different landscapes in the case of remote sensing applications whatever you

are trying to discriminate one class with respect to the other let us say you form discriminant

functions  for  each class  and we have seen expressions  of  that  curtsy using  the  multivariate

Gaussian distribution under the Bayes law that gives us a discriminant Function the mall on the

base distance criteria under that when we took the covariance term equal to an aunt Ida matrix.

We it  boil  down to  a  linear  discriminant  function  if  we  take  two  such  linear  discriminant

functions as given here you get a decision region boundary by solving this, this is a general

expression for a DB decision boundary between two regions if individually each of them are

linear then you actually get an expression like this okay where these w's are the corresponding

weights these are the corresponding bias terms they are for two different classes I, n, j and each

of  them and this  actually  indicates  a  linear  decision  boundary  precisely  now discriminating

between these two classes.

So you are using two discriminant functions for each class or this is actually represent also a

group of classes put together if necessary for certain applications or I could be one class J could

be a mixture of other classes but it  is basically  a binary class education problem two linear

discriminant functions representing two groups or two sets of classes or even just two classes

themselves or even one versus the rest whatever the case may be we are not worried about this at

this point of time.

But if we put them under this expression then you get a linear instrument function and is a course

an expression of a hyper plane a point in one day line in 2d planar surface in 3dhyper planes in

higher dimensions separating the decision regions or dr's in high-dimensional space of course we

know that the hyper plane will past through the origin if the bias term themselves are zero or they

cancel out either they are zero or they cancel out such cases.

(Refer Slide Time: 09:47)



We get, get back to the expression of that capital G which gave us that discriminant function so

we  are  looking  at  the  generalized  results  of  the  Gaussian  case  of  discriminant  function  G

remember in we started with these two classes back we linearize it under the assumption that this

is an identity matrix now we will not make identity matrix let this be a general covariance matrix

but again we will take some special cases so this expression is not new this is the model numbers

term.

This is the constant term and this is of course there is a class variant because if the ∑ I changes

from one class to another this could be separate and this modern resistance in general if this is

not an identity matrix it gives you quadratic terms or quadratic expression it spawns a number of

different type of quadratic surfaces some of these examples will take in the next class when we

talk of nonlinear decision boundaries because we will still talk of linear discriminant functions

under special cases of covariance matrix not equal to an identity matrix also.

We will  talk  about  that  today  and  still  will  be  discussing  in  detail  about  linear  decision

boundaries but remember in general this is a malleable distance criteria it is a vector distance

using the inverse of the covariance matrix term and it is denoted by this, this is the symbol we

might use in certain cases when this remember if this is an identity matrix then this is the simple

equivalent distance norm which we have used and then we are linearize as well by ignoring the

class in very in term the quadratic term okay But in general this the is criteria okay.



(Refer Slide Time: 11:25)

So under the Bayes rule modem class assignments we have assumed that the g of x is equal to

this what is this term called in the Bayes theorem I repeat we have done this, this is called there

are four terms glass prior unconditional condition on a posterior which one is this the classical

posterior given a sample X what is the class to which it belongs to correct so this is the left-hand

side of the page expression that is our discriminant.

We started  with  that  and we made  several  assumptions  we ignored  classifier  of  course you

always ignore the unconditional denominator term okay but we are of course mainly concentrate

on the  conditional  distribution  function  that  is  where  we bought  in  the  multivariate  normal

density distribution so we will assume that the clasp rides are still the same for the time being ok

so the in some sense basically this is what we are talking about G of X well I just give it a

different notation.

Because this is not the same as it so put the, the unconditional density function here product of

these two is log of this Plus this and under this if the class price is same this is the one the class



conditional function here is the one which is going to dictate and we take this to be our normal

density  function  this  one  is  this,  this  is  nothing  new  we  have  all  done  this  but  I  am just

recollecting all of that so that we can put ourselves in perspective the log prior term is still here

and if you break it in two parts and simplify this expression will give you this term and this term

the log pad is still here this is the expression within the exponent sorry it was within the exponent

it has already taken out.

So this  still  here  it  is  still  here  so we have  just  ignored  the  constant  and look at  the  final

expression here what we get I leave this simple derivation here this what is the constant term we

ignored this one this is the constant term we ignored when we went from this step to this step

here the lock price still here the log of the covenants matrix is still here yes and the inverse this is

the manna base resistance here okay.

(Refer Slide Time: 14:01)

So this is what we are working on and earlier we have assumed this to be an identity matrix so

now let us take the next simplest case or the simpler case of the covariance matrix instead of

taking it to be an annuity matrix we will take it to be a diagonal matrix not only diagonal all the

terms variance terms are same and that to follow our classes physically if you want to interpret

this what are you talking about you are distinguished between distinguishing between safe fruits

and flowers two different classes.



And I have taken feature samples like color, weight, smell, size and so on and so forth what I

have found is across the two different classes across the two different classes it seems I am

having the same variance same scatter of all these features the variance of color feature across

the fruits which I have taken is the same as the flowers well from my statement itself you can

almost imagine how little bit quite a bit unrealistic this is this assumption but for the sake of

mathematical argument will start to relax these constraints one after another in the previous case

mind you.

We took the  coverage to  buy and read a  matrix  that  means there were no variance at  all  a

variance was equal to one now at least we are having some variance but the variance is same

across all dimensions across all classes fruits are having the same variance of color as the case of

flour the variance of weight is also the same size is also the same and so on and so forth not an

idealistic  assumption  here  but  just  to  show that  this  may  not  be  good  but  for  the  sake  of

mathematical  argument  yes  we will  still  proceed and go on and we will  eliminate  the class

independent bias which one did we eliminate in the previous expression first of all there were

three terms the lock pride is there what did you eliminate can you guess and tell me from the

previous one.

We will go back and have a look this term how could we eliminate this because the log of this

matrix actually I should put a mode here because the determinant of this so predominant term is

missing here so please put the determinant the determinant of the ∑ okay for a diagonal matrix

what is the determinant  because we have made an assumption that it  is strictly diagonal the

diagonal matrix the determinant will be the product, product of all the diagonal terms correct

product of all the diagonal terms.

So that is the same for across classes that is why the term could be ignored here and inverse of a

diagonal matrix inverse of a diagonal matrix will be 1 by those elements okay and the elements

are σ 2 so 1/ σ 2  now it is taken out and the factor of 2 actually is coming out anyway here this is

already there so in fact this term remains with a 1 /σ2 here this is ignored and the log pride is

there so this is how you get this expression what do you do with this in general.

This expression indicates constant hyper sphere centered around the class mean where is the

class mean here μi why I leave it for you to write this expression in two dimension write this in

two dimension you will get the equation of a what is the geometry you will get go back and look



if  you write  this  expression  this  part  forget  the  constant  term here this  if  you write  in  two

dimension  will  actually  give  you the  expression of  a  you should  be  able  to  extrapolate  the

statement which was there at the bottom of the slide.

We will go back to and look at the slide if these are constant hyper spheres in 2dthis should

indicate what is the projection of a sphere in 2d projection of a sphere in 2d louder you take a

sphere in three dimension projected on the two-dimensional world simple projection take a ball

think of a ball what will the figure indicate geometry in 2dit should be a circle okay so that is an

equation of a circle which you get into D it will be a sphere in 3d and hyper spheres okay.

But more of this later on because you will still looking at so this is in general appears to give an

linear additional Modric because a nonlinear term here the quadratic term here is what this will

do okay.

(Refer Slide Time: 18:44)

But more of this later on so this is an example of the diagonal covariance matrix and this is the

case when σ1 is note equal to σ2 then of course you have to write the inverse of the Covenant

matrix in this form of course if we ignore the subscript that means the individual variants terms

are same you can have the same term along all of this in fact I can take this constant term out and

say this is an identity multiply by 1/ σ2 which you have done little bit earlier.

So considering the instrument function we had ignored this a little bit earlier in general this will

yield  a  weighted  distance  classifier  and depending upon the  covariance  term large  or  small



scatter speed of this we tend to put more emphasis on some feature vector component than the

other this will give in general hyper elliptical surfaces in our d in D dimensional space for each

look at this expression.

Now with this covariance matrix how is this different from the previous covariance matrix σ1 is

equal to  σ2 equal to  σ3 and  σd remember the  σ is still same for all classes but the terms are

different now in the previous case the diagonal terms were all same so those who are giving

hyper spheres nonlinear additional boundaries we are approaching the case where we can get

nonlinear decision boundary because of the quadratic term.

And the decision boundaries will be spheres in the case when you have equal, equal terms or

identical terms as it is called identical terms along the diagonal if they are unequal as given here

if  they are unequal  you will  have hyper ellipsoidal  surfaces  hyper ellipsoidal  surfaces if  the

values are unequal if these are all are same a special case ellipse becomes a sphere 2d so circle or

ellipse in 3d.

You have sphere ellipsoids and in higher dimensions you have hyper spheres or hyper lapse and

we will discuss this in detail in the next class of nonlinear edition boundaries with examples of

non-linear at least in 2d.

We can show this sort of thing carrying on with the discussion of the decision boundaries let us

assume if all the class priors are same well I must want you a little bit that sometimes we are

writing VP of WI but W is wait  so let  us stick to see I for all  k then eliminating the class

independent term there which is basically if you look at this term so these two are ignored you

are just left with the let us consider on this term which is actually telling you that this covariance

term tells you where it should more give more importance towards a particular dimension or not

because this is what will dictate which dimension has more importance okay.

(Refer Slide Time: 21:37)



So this is the term and if you expand that in this particular form you can write this expression in

this form and this can be now written in terms of g ix as this provided you can switch off this term

you can switch off this term if all the corresponding covariance matrixes are same for all classes

now what you are saying is this is not a constraint which we are putting that the covariance

matrix is diagonal not it can be any arbitrary covariance matrix mayor may not be diagonal what

we are saying is it is same for all classes how unrealistic that can be just to show okay it may be

possible in certain situations.

But what I am saying is features such as height weight color size spatial extent for two different

types of fruits and flowers are all saying okay and they are symmetric of course it is symmetric

matrix but they are all same so if it is same you can switch off this I and if you can switch off this

I you can switch off this particular term you will be left with only these two terms here and

typically GI is di by two.

So the  two will  go off  you will  not  to  have  you have a  minus half  factor  here  so we will

concentrate on this term it has come back again this is not a new term one or two classes back

couple of classes back we are talking about this term the last class we discussed at length which

gave us to the concept of Perceptron learning for linear de Chaumont is the only difference now

is earlier this weight was based on only the mean now the covariance term has come and sit here

the covariance term is coming in verse of the covenants matrix to be very precise is coming and

sitting here.



 These weights I have just changed the notation too short of a ω here small W you can treat this

and this is an inverse of the covariance matrix okay so we have discussed this case earlier when

this was an identity matrix and when this was the covariance matrix was an identity matrix we

just had this μ as the weights and μ transpose ρ without this term is what we had for linear

addition we are still  in having linear discriminant functions we can still  have linear decision

boundaries but the covariance term is coming and sitting here it is maybe an arbitrary coverage

metric just it is symmetric that is all.

(Refer Slide Time: 24:23)

So this is what we have and we analyze this for the rest of the class and move word to non linear

decision boundaries in the next class so then it is the last discussion on last part of the disc on

discussion on linear decision boundaries because these type of gix will give us dr's DVS which

are hyper planes and they will be linear by exploiting this constraint as we have done earlier at

the beginning of the class beyond.



This if you have whenever diagonal σ which is class dependent remember this is coming out of

the constraint that day covariance matrix is class independent you will go back and look at this

constraint look this is class in that means you keep changing go from class one to two I to J is the

same covariance matrix.

So it is class independent it is class independent if it  is class dependent or are they often of

diagonal terms are non zero you will typically have non linear decision functions discriminant

functions  decision  regions  are  decision  boundaries  non-linear  discriminant  functions  and

decision  boundaries  are  the  correct  way of  saying there  is  no nonlinear  decision  region but

whatever it means is that discriminant functions and decision bond is actually give you dr's.

So the boundary of this regions will be nonlinear if you have class dependent covariance matrix

and the off diagonal terms typically have more roles to play but as less you as long as you are

having class independent covariance matrix term in a or not including identity matrix which is a

special case of a diagonal covariance matrix you will have linear DF linear TV so again to repeat

what are the special cases of covariance matrices in which you will have linear TVs or linear

discriminant  functions  one is  if  the,  if  the covariance  matrix  is  class independent  that  is  all

straightaway first of all even if this class dependent one well in some sense.

You can say a special case of what we consider the identity matrix that is also class independent

so as long as it is class independent you will have linear discriminant functions if it  is class

dependent and diagonal you will still have hyper ellipsoids or hyper sphere which gives rise to

the simplest case of non linear discriminant functions which we will discuss next.

(Refer Slide Time: 26:57)



Let us proceed with the discussion on the decision boundaries with their and discuss the effect of

class priors in a more general case remember this to just revisit the equations this is what is this

equation we have seen this many times base theorem okay under the Bayes theorem this is the

posterior remember the C changes Wi be careful this is not the same as the class w so this the

same as a class w but not the weight this is the conditional density function which we are talking

about here.

This is the x this is the multivariate Gaussian density which we started few classes back the

normal distribution okay and if you take GI to be this plus the cross prior that means you are

taking the this term which is the class conditional density function as given by this plus the class

prior you can expand it using this expression that means what you are doing this log prior is here

and we have done this many, many times take the log of this expression you have resistance plus

these two terms which one of them is a constant anyway.

The  other  could  be  class  dependent  or  class  independent  since  we  are  talking  about  linear

decision  boundaries  what  assumption  did  we  make  about  the  covariance  matrix  it  is  glass

independent so there is no subscript here you can see although I have put a subscript here but the

covariance matrix is same so we can switch it off here carrying on.

So we can switch off these two terms because they are class independent we are left with the

Mahalanobis distance function that is Euclidean distance waited by the covariance matrix it is

same for all classes plus the class file what is this term doing if it is the classifier is not same



remember what is class prior you are discriminated between two types of fruits say mangoes vs

apple both are.

Let us say seasonal fruits depending upon certain time of the year you may have more apples let

us say in winter in summer or rainy season you may have more mangoes so the class priors will

change they may not be the same that is what  we are saying what how does this affect the

decision boundary.

(Refer Slide Time: 29:10)

Let us look canceling the class invariant terms we have just left with these two remember this is

the main one which is responsible for all my linear or non-linear decision boundaries. But under

the case same diagonal σ that means we are switching of I diagonal elements class independent

what do we have for the expression so we are switching of this diagonal this is the expression

which we Plus lock prior this is the case a we are discussing diagonal we have done this already

this is a diagonal matrix.

We can take out this half is here inverse of the covariance matrix will this term and then we have

the class prior when we break open the expression this is the expression which we have nonlinear



term here the linear term particularly here as a function of X we will analyze this expression in

the next class in the next slide.

(Refer Slide Time: 30:00)

Analyzing  this  expression  again  the  nonlinear  term  here  the  linear  part  here  why  are  you

switching of this because if you move from one class to the other change I to J you say this will

change  this  will  change  as  well  this  will  change  this  will  not  change.  So  this  is  a  class

independent term again it is a quadratic term but class independent term okay and why it has

come because the class independent covariance matrix the same σ which is diagonal okay.

So once you do this, this is what you are and this is same expression which we had just a few

slides back sometime back but instead of writing inverse of the covariance matrix here multiplied

by the mean you are able to right now this is - σ2 sorry divided by the variance, divided by the

variance here the same thing which comes here remember the two and two, two cancels out here

so this divided by σ2 you will transpose in  general you will have it as a inverse of the covariance

matrix here basically this term is indicating the inverse of the covariance matrix but the class

power is still here earlier we are ignored this the linear test in boundary is now this we have seen

at the beginning of the class today.



That it can be written in this where individually each of these terms are given by this expression

so it is WK transpose -L where K and L at for the two different classes they are not identical and

the bias term is also written here.

(Refer Slide Time: 31:32)

Let us observe this expression in the next slide the linear this decision boundary is given by this

which is basically this and I leave this is an exercise for you to prove that this difference in the

bias  term can  also  be  written  as  a  function  of  this  which  is  like  this  where  the  Xo this  is

interesting is given as this particular term look at this term I am leaving this is an exercise for

you to prove it analytically you can prove this with a little bit of jiggle maybe about a half a page

of derivation okay.

And henceforth if you can write this term in terms of this and substitute back here this expression

can be written this is nothing new we had this to two classes back w into x minus d is equal to

zero from where we derive the Perceptron the hyper plane this is a plane passing through the

origin or pace plane passing through a particular point the only thing is what is this w it is the it

is the difference of these two main vectors what is the mean vectors.

If there are two main vectors this is the vector difference between the two mean vectors that is

the ws will be remember the w is the normal to the hyper plane the normal to the hyper plane is



now the line joining the two means and if it is so the hyper plane will be normal to the line

joining the two means.

I repeat again the W which you see here we had seen this earlier two classes back that if this is an

hyper plane this is the W and now what you are saying is this w is the vector joining the two

class means so it is a class mean one here in the class mean to hear this is the YW this is the

hyper plane will  have it is in a diagram coming up in the next slide but I hope you got the

justification of that maybe I  will go to the board and just draw that for you because I may not

have a slight ready.

(Refer Slide Time: 33:37)

So if this is a μk and this is me well then μ k -μL okay this will be the w the vector direction will

be here or here although it  strictly does not matter  what do you think it  is given as μK the

expression says it is μ K – μL, μ K- μL it will be pointing towards this towards me this will be W

and we said that the W is orthogonal to the hyper plane.

So this is the hyper plane H I am drawing in 2dthis is my attend space or feature space not the

weight  space  like  we  did  in  per  case  of  Perceptron  so  this  should  be  x1  this  will  be  X2

dimensional feature space you can visualize in third dimension also this is my hyper plane and

which I wrote that equation here W X –X0 hyper plane which is equal to if you select points here

in this airplane this will be equal to 0.



So this is the expression which defines this hyper plane this 8w is normal to that okay and you

could ask me where is this X0 it is a point here it is a point here on this plane okay and let us look

at the expression for X0 now in this slide look at that expression of the X0 at X0 t is a point on H

and if you look at this expression of X0 look at this term can you tell me where is this term it is

the average of the two means go back to the board these are the two means me uk μL average of

the two means will be the central point.

Let us say so for the time being I let this up it is not till the some average value of the two means

and it is seems to be an approximation because it is not the full expression this containing the

first term in the slide so let us go back to the slide so what I have marked there and the board is

basically the yeah this term here but there is another factor which is based on the class mean we

will explore that now we will explore that now what is the effect of class priors on that point X 0

and X0 is a point which is actually lying on the hyper plane okay.
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So this is the X0  so we had this w is very simply this is the vector it is the line joining the two

means vector from one mean to the other one orthogonal to the hyper plane and hyper plane

passing through X know not because that will actually decide my decision boundary it should

have been in between X0  will be equal to this under what condition tell me what condition the

expression of the second term do not tell me σ equal to zero what, what constraint will make this

vanish do not tell me μ should be equal to μ L do not tell me this will be equal to zero.

These two probability terms if their priors are same class priors are same that means I get equal

number of mangoes as equal number of apples and if I can do that then if that happens this term

vanishes forcing X0 will be equal to the mean of these two classes that means my hyper plane is

strictly in the middle of the two class means in this case hyper plane H is the decision boundary

earlier it was discriminant function.

(Refer Slide Time: 37:14)



But now it  is  a  difference of  2 g's  which is  a  linear  decision boundary we will  have some

examples let us look at the simple example which I have borrowed from the website I will give

that reference a little bit later on look these are two Gaussian functions drawn here and if you

look at the Bayes theorem ignoring the class priors this point at the center of intersection of these

two should have been the actual value of X0,   X0 is a point here mind you average of the two

means look at this is one mean this is the other mean class 1 w1 class 2 w-2 two Gaussian

distributions intersection of this at the middle should have been the point X0 corresponding to

this expression.

But in this figure 1 class prior is more than the other one so this term will not vanish it pushes the

decision boundary more towards the other class ideally I would have loved to have the decision

boundary exactly in the middle of the two Gaussian functions provided the class priors are the

same but if the class priors are more what does it mean in reality there are more apples than

mangoes there are more flowers than fruits  there are more men than women there are more

forests than mountains okay.

There are more a landscape there is more water than deserts okay there are more people smiling

then more people anger I am talking about discrimination of expressions in the human face these

are examples  only and in  certain  cases of class priors could be more class  prior pushes the

decision boundary this will be an additive corrective term to this value of x not the point is push

there it could go to the other side if this value of the class player of class two would have been



more increase the class prior more you can see how far it goes why because this value is .9 this is

0.1 this is 0.7 and 0.3.

So this value of class power is now more than this it pushes the decision boundary from this

point here more towards the other side why because this term will be now larger because this

numerator is more than it is nominative making this term more for this figure than the left hand

side this is a case of a DBE with same diagonal σ same for all classes all right identical diagonal

elements that is why you could have taken out that σ but one class prior is more than the other

one the decision bond is not lying in the middle it is a point in 1d we will show examples now in

2d what will become a line and you can extend that to a plane in three dimension hyper planes in

higher dimension.

(Refer Slide Time: 40:00)

This  is  a  java  applet  available  as  an  open  source  which  you  can  play  and  manipulate  the

individual terms of variances and the class priors so there is a slight bar to change the standard,

standard deviation is equal to one for both, both equation a deviation identical covariance matrix

2d but what happens both identical class spares.

So this is this is now look at the DB here this is the type of plane H which is a DB where it is

sitting this is that X0 Y because it is exactly the midpoint of these two means μ1 μ2 m1 and m2

so assume this to be μ1 μ2 classes equal priors .5, .5 each as given in this two bars at the bottom

class fires are same so ideal condition so class projects are same.



(Refer Slide Time: 40:53)

If you go back this terms cancels out you exactly have the X0 at the bisector point with μ1.

(Refer Slide Time: 41:01)

And  now  DB  is  actually  a  perpendicular  bisector  of  the  line  joining  the  means  DB  is  a

perpendicular bisector as a special case law of the class joining the class means if the class priors



are same identical covariance matrices that means class independent covariance matrix what I

will do now first I will change the class priors and see what happens to this diagram so now what

we will do is we will first change the class priors and see what does it cause in what the f what is

the effect in the location of the DB that is number one.

(Refer Slide Time: 41:46)

And then we also of course change the variance terms and see if that has an effect as well it

should have an effect as well let us look at this diagram on the right hand side what I  have done

is maintained the same value of the variance which is equal to one both here as well as there but I

have changed one of the class price look at the value here it is given and this blue bar indicating

that the value is much large is 9. And the other class pair is .1 earlier the both were identical what

it  has done earlier  the decision boundary was at  this  point  or  the line here as  given in  this

diagram.



It has pushed it towards which class it had pushed it towards the other class which is a less class

prior class one had the less class DB has moved towards that earlier it is at the center because the

class pass were same the class prior for class 1 is now .8 indicated by the big red bar there the

other value is point to which is much less here look what it has done because the class pair of

class 1 is higher it is push the decision boundary from this point has given here to more towards

the cluster why the second term the decision boundary will now change its sign and move in the

other direction.

Remember it was a log ratio of class priors so depending upon which term is more you will have

a positive value or a negative numerical value pushing the, the separating hyper plane as the DB

towards one particular class which particular class does it move towards the class mean which is

having me less class prior you see the less class prior the DB is moving towards their class mean

here it is moving towards class to mean because that has the less class prior so this is the effect of

class prior in base decision rule under the normal distribution all that has been taken all right the

class prior is not allowing the decision boundary to be strictly at the perpendicular bisector.

Whether it is a line or a plane or even a point in 1dremember the previous slide where it pushed

it towards the class mean or even further away.

(Refer Slide Time: 43:56)

Let us go back you look at this example here you look at this it has even gone past the class

mean of class 2 because it is really very, very large the class prior for class I think there is a typo



here this should be w one class pair for w one is .7 this is .9 so it is gone pass the class prior for

the second class itself though the mean is here somewhere cannot pass then so if it is too big it

can even go past the class means whether it will go pass the class mean or not depends on the

individual variants.
(Refer Slide Time: 44:37)

So what I will do now is keeping these unequal class prices we will change the class variance

now the scatter we will reduce in the next slide.

(Refer Slide Time: 44:44)



Look this is the effect of class priors unequal cross priors but a lesser scattered this has moved

but not that much that means the variance has a role to play this is standard deviation let us go

back to the expression there look this is multiplying factor so if this is larger this effectively more

pronounced if this is less this will be lost pronounced so that is why in these cases the effect is

more and if you enlarge it more if the variance is more than will be a class overlap plus the

decision boundary will skip moving more towards the class mean.

And even further away remember it will  always orthogonal the plane will  be orthogonal the

separating hyper plane or the DB in this case will be normal to the line or vector joining the two

class means or the vector joining the two classrooms will be orthogonal to the plane that will

always be the case the plane will remain orthogonal to this vector but it may go away if the ratio

of this is higher or the variance terms increases here we have reduced the variance the shift is

there is not at the perpendicular bisector.

Because its prior is less let us look at this case here this is the case where the variance is really

large it has come the separating hyper plane has come more closer to the class minute may go

further away if you increase this or reduce this further and change this increase it more towards a

value 1 so this shows an effect of where the decision boundary linearization boundary will be

located depending upon two factors the spread or scatter of the individual scatter matrices or the

variance of the features.



And the class pass this will decide where the decision boundary will be located remember always

it will be the separating hyper plane will be orthogonal to the line joining the two class means or

the line joining to class planes will be orthogonal to the hyper plane but its position dictated by

X0 will be dictated by the second term in general it will be in the perpendicular bisector at the

center point of the line joining the two class means but it will go up and down more towards the

class mean depending upon the ratio of the class price multiplied by a factor which also depends

on the variance plus there is another factor in between.

(Refer Slide Time: 47:15)

Let us go back to the expression normalized by see this is the vector this is also a vector ton so

this,  this  is  a unit  vector  along the line joining the two class  means so the numerical  value

dictated by the log prior show and the variance or the scatter or spread dictates where you are we

will stop with the discussion today on linear decision boundaries will move towards nonlinear,

non-legal additional boundaries more where we will have we will have class dependent variances

or covariance matrices and the effect of off diagonal terms also as long as it is unequal as long as

it is unequal we will have non-linear decision boundaries thank you will come back to the next

class.
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