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So I have actually given you some sort of an introduction to pattern recognition where I basically

mention the uses of pattern recognition, now I shall be going into the mathematics. Before I actually

enter into the subject of pattern recognition we need to know a little bit of mathematics, preliminary

mathematics, so that we can actually use those things, use the mathematics while developing theorems

are other results  for  pattern recognition.  The basic mathematics involves  some amount of  matrix

algebra and basics of probability theory and statistics and yes, I also assume some amount of calculus

knowledge, some amount of calculus knowledge.  
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I assume that all of you have this knowledge, I assume that all of you know the meaning of what a

probability density function is and I assume that you know what a Gaussian distribution is.  Let us just



see, a probability density function is, it may be defined over N dimensional Euclidean space which I

represented by RN.

(Refer Slide Time: 02:10)

This is a point in n dimensional Euclidean space. This is actually a vector and a column vector, it is a

column vector. It has smaller number of components and this belongs to N dimensional Euclidean

space and a probability density function P defined over N dimensional Euclidean space. 
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P defined over N dimensional Euclidean space, it has the following properties, it is greater than or

equal to zero for all x belonging to RN and integral Px dx over RN = 1. 
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This is a probability density function over N dimensional Euclidean space. This DX it means actually

D the first component if I call it X1 then DX1 DX2 over DXN. So that is just represented as DX and

there  is  this  underline  you  will  see  at  all  these  places,  this  is  representing  column vector.  It  is

representing a vector. And integral PX DX over the whole of RN = 1. 

So any function satisfying these two properties  is  known as  probability  density  function over  N

dimensional Euclidean space. We can actually in the course of this lectures, we can assume that we

are not going into complex spaces, basically we are going to be in the real spaces. So our probability

density function is like this and now there are many such functions like this. One such function is

known as density function for Gaussian distribution or Gaussian density function.  Density function

for Gaussian distribution that is also known as normal density function. It is, the definition is this. 
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(1/√2Лn) determinant of σ1/2 exponential to the power – ½ x-μ’, prime means transpose σ -1 x-μ. Here

there is a determinant of σ1/2. I think since you have got background in matrix algebra, determinant of

σ it need not always be positive. It  can be zero or it can also be negative. If determinant of σ is

negative then determinant of σ to the power half you cannot write because then it becomes a complex

number. And our definition of probability density function, not only our definition it says it must be

strictly greater than or equal to zero.  

So  this  means  that  necessarily  this  should  be  greater  than  zero.  The  determinant  of  σ  should

necessarily be greater than zero. Even if it is zero this whole quantity is not defined. Even if it is zero

this whole quantity is not defined. So this should be strictly greater than zero and this exponential

means E, E to the power of something.  Here let us just see this x is an N dimensional vector, Mu is

the mean vector. Mu is what is known as mean vector. 

(Refer Slide Time: 07:20)



It is the mean, it represents the mean of the distribution. Mean average of the distribution and this is

also small N dimensional vector. X is also small N dimensional vector. Both of them are column

vectors, so when I write the transports they become row vectors that means this is going to be 1/N.  So

here let us look at this, this is x- μ this will be n/1. Now what is now the σ? σ is known as, there are

several names for it, it is known as variants covariance matrix. Or another name for it is dispersion

matrix, variants covariance matrix or dispersion matrix. 
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This will be n/N matrix, σ is an n/n matrix so σ inverse will also be n/n. So then this whole thing will

be 1/n, n/n, this whole thing will be 1/1 that is the scalar. So e power, so any quantity is greater than or

equal to zero, right, e power any quantity is greater than or = 0 and this is scalar so this will be greater

than or equal to zero. Anyway I have already mentioned that the determinant of σ has to be strictly

greater than zero, determinant of σ has to be strictly greater than zero. Now how does one ensure it,

that let me tell you how one ensures that.

First  do you all  understand the meaning of  dispersion matrix variants covariance matrix,  do you

understand, yes or no? I think I will explain. So I will explain to you what a dispersion matrix is or

what a variance covariance matrix is. For this one you need to know first the meaning of variance and

you need to know the meaning of covariance, you need to know the meaning of variance as well as

you need to know the meaning of covariance.

If you have n observations X1 X2 XN. These are points in R, that means these are n values on real

line, then the mean of this n values x bar = I over n, Σi  = 1 to n xi,  this  is the mean of this n

observations. 
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Then the variance of this n observations, the variance is 1over N Σi= 12N XI-X bar whole squared.

The variance is - 1/N Σi=12N, XI-X bar whole squared, that is from every point you subtract the mean

and you take the square, like that you do it for all the n points and take the average of this squares,

that is 1/n, Σi = 12N, XI-X bar whole squared. In some books you would find some other expression

like 1/n-1, Σi=12n xi-x bar whole square, in some books you will  find this also. This is actually

unbiased estimate for variance of the population. 

This is  known as unbiased estimate for variance of the population,  this  is  a slightly complicated

concept in statistics, let us not going to those specifics there what is n or N -1, let us not go into the

specifics, we can just follow one of these things and I would like to follow this.
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But if you are interested you can also follow this n-1 also. There will be slight differences in the actual

values if you follow n-1 instead of n but ultimately for the decisions it is basically looking at the

definition of variants in a slightly different way than, if you write 1/n or 1/n-1 basically it tells that

you are looking at the concept of variants in two different ways. There is a slight difference, if you

just follow one of these things it is fine and I am following 1/n but you can also follow 1/n-1.  

1/n-1 also tells you that it is an unbiased estimate of there is something called a population variants

for that the unbiased estimate is e 1/n-1 Σi=1 to n (xi-xbar)2.  This basically for advance students of

statistics they will use 1/n-1. The advance students of statistics they will use 1/n-1. So I am going to

follow 1/n which is what generally in the preliminary level 1/n Σi=1 to n (xi-xbar) 2 is not in the

preliminary level, in the advance level it becomes 1/n-1. This is the basic difference. Now this is about

variants. Now there is another concept that is covariance. What is covariance? 

In order to explain the meaning of the word covariant we need to have two variables, let us write the

two variables as x and y, it is something like x is say height, y is say weight.
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On the same individual you are measuring the individuals height say in cm, individuals weight say in

kg. Like that you are measuring these heights and weights say for smaller number of individuals, then

you are going to get observations like x1 y1, x2 y2 and you will get xn yn. 
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Now what you do is that you just plot these n values. Now I shall give here three such plots. Actually

these plots can look in very many ways; I am going to give examples of three such plots. In one plot

the points are looking like this. In another plot that is here the x and y variables are such that xn and

yn, xi = 12n, yii= 12n. So this xi and yi they are looking like this. In the third plot, xi and yi = 12n,

those points are looking like this. 
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Now let us see, here this is say your x’s, and these are your y’s. Here as x values are increasing the y

values are also more or less increasing. So we would like to denote this relationship by some quantity

that is greater than zero. We would like to denote this relationship by some quantity greater than zero.
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Now let us look at this, here when x’s are increasing y is decreasing. So this is a negative relationship.

Here we would like to represent this relationship by the same quantity but that should be less than

zero. Now let us look at this, here whatever may be the value of x, y is more or less in the same range.

So in this case we would like to get the relationship as something very close to zero. In this case we

would like to get as something very close to zero. 

So we would like to define a quantity in such a way that quantity should take positive value here,

negative value here. It should be something very close to zero here. What is that quantity? Let us see

what that quantity is. For all the exercise here you find the average of these x’s, and you find the

average of these yi’s also. So probably that point will be somewhere here. 
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So then what I will do is that I change my axis to this. So this point is x bar y bar. Similarly the x bar

and y bar here for this quantity is x bar y bar, for this set of it, and for this set probably x bar and y bar

is this, so this is your x bar and y bar. 
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Is this clear? Now what I will do is that take a point, let us look at the coordinates of this point with

respect to new x bar and y bar then at this corresponding value for x is this and the corresponding

value for y is this, right. Similarly, for a point here the corresponding value for x is this and y is this.

For a point here, the value for x is this and y is this and then so on. Now you multiply the new x and y

values, then what is going to happen? Note that this is the first quadrant according to the new axis,

this is the second quadrant, this is the third quadrant and this is the fourth quadrant. 

Here x’s and y’s they are greater than 0, product will be greater than 0. Here x’s and y’s are less than 0

product will be greater than 0 and here the product will be less than 0. Note that the place where

products are less than 0, the number of such points is small whereas the number of points for which

the product is greater than 0 that is large and the values are also large, so if you have Σi=12n, xi-x bar

x yi=y bar. 
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Which is actually this into this at this point, this into this at this point and then soon and then you are

just adding them up and again you can have 1 by n or 1/n -1. I am taking 1/n here. This will be greater

than 0 in this case, right. Now what will happen here? Here the points are in the second and fourth

quadrants, so the product will  be less than 0, so here this quantity will  be less than 0. What will

happen to this? Here the points are more or less equally distributed in all the quadrants, so this Σ is

likely to be very close to 0, this is known as covariance, okay. 
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This is known as covariance between x and y, okay. This is also represented as cov, you only write the

variables x, y. Now if you have two variables your covariance system, I said that we have points in N-

dimensional Euclidean space that means basically we are assuming that we have smaller number of

variables which in pattern recognition language we call  them as features,  okay. We have smaller

number of features or smaller number of variables. So if you take pairs you have how many pairs?

You have nc2 pair’s right. By the way, what is covariance of x with x, it is basically the variants, is

this clear?

Covariance of x with itself that means (xi=x bar x xi-x bar, xi-x bar)2 which is what in the variants

here,  okay. So  covariance  of  x  with  itself  is  basically  the  variants,  okay. So  if  we  are  in  small

dimensional space that means basically we have the number of figures are smaller than the variants,

covariance matrix is like this. This is the variants, covariance matrix. 
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If the n features are x1, x2, xn then the variance, co-variance matrix of this n variables or n features.

These n features this is denoted by sigma is defined as this. There are smaller numbers of variables; I

am representing number x1, x2, xn since we are in the n-dimensional Euclidean space. There are

smaller numbers of variables or smaller number of features and those variables are represented by x1,

x2, xn then the variance co-variance matrix is this. 
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This is an n/n matrix it has n rows and n columns. This is an n/n matrix. The first quantity here is co-

variance of x1 with x1, which is nothing but variance of x1. This is co-variances of x1 with x2. If you

look at the definition of co-variance whether you write x1 with x2 or x2 with x1 they are the same

thing, so this co-variance of x1 with x2, this is x1 with x3, x1 with xn. This is x2 with x1 or x1 with

x2, this is x2 with x2 and then so on. 

So since co-variance of x1, x2 is same as x2, x1, x1, x3 is same as x3, x1, this matrix is symmetric it

is a real matrix, it is a symmetric matrix and it is also what is known as positive definite. It can be

shown to be always non-negative definite and in most of the applications it is positive definite. I will

explain to you the meaning of positive definite. Probably all of you know the meaning of the word

distance. All of you probably also know the meaning of Euclidian distance. 

Suppose you have 2 vectors x1, x2, xn this is one vector, y1, y2 yn this is another vector then the

distance between these two vectors, if I represent this vector by x, if I represent this vector by y then

the distance between these vectors x and y is equal to (Σi-12n xi-y)2 and then there is a √, right. This is

the Euclidian distance which all of us know, okay.  
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Now let me ask you a question, my question is like this, okay, let us assume that the value of small n

is equal to two. We only have vectors in our two dimensional space and let us assume that the first one

is representing height and the second one is representing weight. Now say for a person the height let

me just say 160 cm, say the weight is 70 kg this is for one person. Say for another person, the height

is 158 cm, say the weight is 73 kg, now you want to measure the distance between these two. Now

would you like to apply this formula for it? You will have difficulty. 

If you want to apply this formula then please note that you are going to have difficulty. What is the

difficulty? The difficulty is that if you want to apply this formula one is say i=1, you are going to have

the difference between there is a cm value here, there is a centimetre value, 160-158 this is 2, you will

get 22 and here the next one is 32, right. Say I measure height in cm, weight in kg. My friend here, he

may want to measure height in mm then what is going to happen? This will be 1600, this will be

1580, the difference will be 20 and this will be 202 400, then there is a difference. 

I mean originally I got 22+32, which is √13 whereas if I measure this in mm then it is going to be

400+9=409, whereas the two human beings they are the same, so the distance should not change just

because I changed the units. The distance should not change just because I changed the units. Always

Euclidian distance is  not  useful.  Are you understanding it?  Always the Euclidian distance is  not

useful, then how does one measure the distance, let us see.

Let me write this thing as D2 xy, so I am just removing √ here this I will just write it as x1-y1, x2-y2,

this is a row vector. I am writing 1001 and I am writing this one x1-y1, x2-y2, I am writing 1001 then

x1-y1, x2-y2. Do you think the product of this thing is actually Σi= 1 to 2 (xi-y 2) multiplication by

identity matrix does not change anything, right.  So it is actually going to be Σx-y whole square. Now

I said that  just  because I  changed the units  the  value should not  change,  right.  So  now a slight

generalization of the distance e instead of 1001 probably we write some weight w1 and w2.
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So that here I write wi this depends on the unit. The wi values will change if the units change, so that

the whole thing will remain the same. So this is a small change in the definition of distance and you

may also have something more instead of this, we might have w11, w12 this is for the present moment

let me just take w22, this is a better generalization of the previous one. In the previous one I wrote

this, now I want this thing to give us distance, distance by definition it should be greater than or equal

to 0. 

Now my question to you is for what values of w1 and w2 this thing will be greater than or equal to 0.

Now if w1 is strictly greater than or equal to 0 and w2 is strictly greater than or equal to 0 then

whatever may be the values of this w1 and w2 if they are strictly greater than or equal to 0 then the

whole thing will be greater than or equal to 0, because this whole thing is nothing but (wi and xi –yi) 2

and wi are greater than equal to 0 though the whole sum is greater than or equal to 0, but then if I

write a matrix like this, note that I wrote basically a symmetric matrix here w11, this w12 I wrote the

same thing here.

And this w22 and this is a generalization of this, okay then for which such matrices this thing will be

greater than or equal to 0? I will give you one example, in fact you are going to get many, many such

examples.
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Let me just say this, this will be always in fact I will say it is strictly greater than 0.  If (x1 is not equal

to y1) or (x2 is not equal to y2), you take any x1, y1, x2, y2, if one of these properties is satisfied then

this is strictly greater than 0, you can check in your home, any x1 and y1, x2 and y2. One these

properties should hold, either this hold of this hold if you both of them hold then there is no problem.

Now, I am going to write the definition of positive definite matrix An/n is said to be positive definite

if this is an n/n matrix.  

If A’ AA is strictly greater than 0 for all A0=0 vector, this is the 0 vector.  It has n rows and one

column.  The matrix A is set to be positive definite if A’ AA, A is n/1, so A’ is 1/n, A is n/n then this

n/1, so the whole thing is a scalar, so I can write greater than 0, equal to 0, or less than 0.  Now, this is

matrix A is said to be positive definite.  If this is greater than 0 for all A0=0 vector, and there are

many, many such matrices.

And the variance, covariance matrix is what is known as let us just see, alright another definition A

n/n is said to be here it is written positive, here it is written as positive semi-definite.  In some books,

this is also written as non-negative definite.  So, matrix A is said to be positive semi-definite or non-

negative definite.  If A’ AA is greater than or equal to 0 for all A.  If this is greater than or equal to 0

for all A, and this is strictly greater than 0.  

Usually in  matrix  algebra,  you would basically  find this  definition,  but  you would not  know or

generally we may not be knowing why this definition is necessary.  I mean a way of looking at this

definition is from the point of view of the distances.  We want something like this because we wanted

this distance to be greater than 0, right?  We want this thing to be greater than 0.  We want this

distance to be equal to 0 if this is equal to this and this is equal to this, then we want the distance to be

equal to 0.  



Otherwise, we wanted to be strictly greater than 0, right.  Otherwise if x1=y1 and x2=y2 we want the

distance to  be equal  to  0,  otherwise,  we want  the  distance to  be strictly  greater  than 0.   If  two

quantities are same, then there is no distance.  When there is a difference and there is a distance, right.

So that is what we want to incorporate in the definition that is why it is written in like this.  We want

some such definition and such a  matrix  is  known to be positive  definite  whereas  if  you include

equality and this non-negative definite. 

The variance and covariance matrix is, it can be shown to be non-negative definite.  The variance,

covariance matrix can be shown to be non-negative definite.  In fact, most of the times it is positive

definite and in the case of normal distribution, we assume that the variance, covariance matrix is

positive definite that is why we write in the denominator determinant of σ1/2. If variance, covariance

matrix is positive definite then some properties follow automatically. 

What are the properties?  Probably, you are aware that the determinant of the matrix is product of its

eigenvalues.  Now, if it is variance, covariance matrix, then all the eigenvalues because it is non-

negative definite they are to be strictly greater than or equal to 0, and if it is positive definite then

every eigenvalue is strictly greater than 0.

So that the product is also greater than 0, so that you can write the √ determinant σ 1/2.  So, variance,

covariance matrix is positive definite implies every eigenvalue of the matrix is strictly greater than 0,

okay.   So,  this  is  one  property  that  people  have  used  extensively  in  the  literature  on  pattern

recognition. Shall we stop here.
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