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So welcome back to the lecture series on pattern recognition. We have discussed many details

about different type of classifiers, both supervise, non supervise methods. Typically if you take

the names, we started with base classifiers, the supervised one, then we also discussed other

methods of classification and clustering to take a few examples DV scan, cane and neighborhood

rule, the K means algorithm and so on.

There are two other types of variance of classifiers which are very commonly used in many

pattern recognition application, one of them is of course a supervised, the other is unsupervised

method. We will start with one of them, and these method can be called an unsupervised method

of classification as well as clustering which is called the principal component analysis, the PCA. 

It is a widely used method, its main application  has been in many other applications like data

dimension and data deduction, then compression and so and so forth. But we will see if it can be

used for classification as well. And we will call it as unsupervised classification, because in this

case, the class samples of the data are not know. There are many variance of these terms of the

PCA which is used one is called the KLT or the Karhunen-Loeve transform.

(Refer Slide Time: 01:52) 



The KLT has given the slide. People also casually sometimes called PCA as an SVD, the similar

valid decomposition which we studied much earlier in the course under basics of linear algebra

and vector spaces. Sometimes PCA and SVD are used in dischangebly although, I must mention

it is not correct to use that, but one must remember why it is so, because SVD is, or the singular

value decomposition is the main tool or the method used for obtaining a PCA.

So what are principal components, and what is the principal component analysis and why SVD,

because we need to do some Eigen decompositions. If you look back into the slide it is based on

an Eigen analysis,  the  KLT or  the  PCA and the  main  purpose  of  this  is  to  obtain  a  set  of

eigenvectors which are derived from the Eigen decomposition of a scatter matrix. 

We will  define what  is  this  scatter  matrix;  it  may have been also used in  other applications

throughout this course, the other concepts discussed. And we will have descriptions in this slide,

so that in spite of whatever I tell you, you always go back and look into this video with the slide

disproving concepts of PCA as well as SVD. And we would also take a toy example at the end to

describe what is this PCA okay.

As we have been doing many other examples, we do take toy examples in 2-D and 3-D, so we

will do that and, but remember one thing that this is involving Eigen decomposition and matrix

analysis. So if you have not gone through that couple of lectures on matrix decomposition, please

go through that. Al though I will have at least one or two concepts discussed with the help of

sides on Eigen decomposition or SVD.



So we aim to actually obtain a projection set that best explains distribution of the representative

features of an object of interest.  This object of interest  could be re particular pattern or any

particular  object  which we are trying to retrieve  from the image,  but  of course this  PCA is

applicable for any other type of data. People have applied it for speech signals, for other type of

multidimensional signals which happen in practice.

Image, video, acoustics, speech music, video, etc.., and many other applications as well. And

what is this projection set, and what is this representation for the distribution we will actually

look at it. In some sense, you must remember although we are talking about representation, this

is a non-parametric or parameter fee method of obtaining a representation of the data.

PCA chooses a dimensionality reduction projection that maximizes the scatter of all projected

samples. So we will see that with the example what we mean by this scatter of the examples, you

know the scatter is a very important term, you need to do that using, we have done that is in the

covariance  matrix,  when  we talked of  distance  functions.  And any method of clustering  or

classification which you do involves trying to look at the scatter of the data.

So we will look at the scatter of the data, so it becomes very, very important to model that and

use it for our analysis. And although the main aim is to reduce the dimensionality of the problem

by PCA and also in that process choose the best set of dimensions in a different domain. It is not

like now, if you have an N dimensional data, just choose some arbitrary based M dimensions,

where M is lass that N, that is not the main aim of PCA.

But we transform it to some other domain and that dimension of that projected domain will be

less than the original  dimension of the data.  And in the projected domain we choose certain

directions where the scatter is maximized, we will see how this is done. So look at the last line,

this idea is important, where we are talking about trying to maximize the scatter  of the samples

which are projected onto another dimension.

(Refer Slide Time: 06:04)



So carrying on the discussion on PCA, I have used a set of N sample images as an example, but

it could be any other data. So what this basically means is, X1, X2, X3…… Xn are different

image samples. Instead of image samples, it could be any other data. I am choosing an example

of images, because in many of our examples we have also chosen that, and some of the toy

examples and analysis which we have done and which we are going to show also we have used

lots of image samples.

Because that is an easy method of illustration and visualization which can help you to understand

concepts better. So what we are trying to see here, if you are given N different images, it could

be any other data mind you, but let us say N different images. This N different images pertain to

one type of an object within that we will have class. Let us say you have image samples of fruits,

or image sample of cars, or even let us say faces for the example of a person authentication in

case of biometry.

So you are given N different image such samples, all belonging to the same or similar type, but

of different classes. That means if you have N sample images of M different individuals. So M

could be 10, M could be 100, that means 100 sample images of 10 different individuals, that

means typically on an average you will have about 10 samples per person, or per class. So if you

have 10 different fruits, 10 different cars, 10 different bicycles for each such class you have 10

different samples, so totally you will have 100 different image samples.



This could be any other data which would, on image like it could be speech, it could be audio, it

could be some vibrations signals observed using some sort of a measuring device for any other

measurements. So you have N different images and of course you have a dimensionality for each

data. In this particular case of an image, if you ask me what is the dimensionality of each and

what is the feature or the feature vector here, each image is of its particular size.

Let us say WxW or DxD, in that – so in such a case you will have the dimensionality for each

data is D2 or W2. So if you look back there are N sample images X1, X2, X3 up to XN, each of

this X is a vector of certain dimension depending upon the dimension of the feature space you

are working in. instead of images, if you work with a certain feature dimension, because certain

types  of  data  set  samples  which  are  given  for  the  purpose  of  pattern  recognition,  pattern

classification or machine learning applications are given for a certain dimension.

It  could, the dimension could be 30, it could be 100 or a few 1000. And there are different

sample is given for all the classes put together or for each particular class the total number of

samples is capital N.

The dimension will be D and each image belongs to one of this small c classes okay so this

capital C indicates the class level okay and typically the capital C will be of course much, much

less than capital N because for each class you will have a certain number of samples so average

number of samples per class multiply by the total number of classes should actually give this

capital N.

So remember once again the capital X is the class level small x indicates the data point of a

certain  dimension  okay  and  what  we  want  to  do  with  the  help  of  PCA is  to  do  a  linear

transformation mapping the original n dimensional image space data is capital N is this d2 small

n is not same as capital N be careful with the notation this small n indicates the dimension of the

sample okay so if d cross d d2 is the small n if it is w cross w image size then n=d2 and if it is

some other feature data research whatever the dimension of the problem d is typical d we have

used d in many of our previous lectures as the dimension of the sample or the domain in which

we are working.

And here we just be careful that we are using capital small n as a notation so we want to map or

project either mapping or a projection you can think of from the original n dimension image



space to m dimensional feature space where typically m is less than n sometimes it could be

much, much less than small n okay.

(Refer Slide Time: 10:42)

So the new feature vectors okay remembered so hence forth will not discriminate image pixels or

original data points from feature vector dimension if we take the original sample point that6 is

also true so the feature vector versus of size of dimension n small n and we are projecting down

to  lower dimensions small m  and we will represent that by yk  so xk is projected to yk  each of

this  yk  is  a  belonging  to  dimension  m and  liner  transformation  is  given  by  this  particular

expression here okay.

We talk of certain matrix for the timing you can think of this as sort of eight matrix okay but this

is the one which is responsible for the mapping or the transformation from an higher dimensional

description or data space n to a smaller dimension m so if we look back here xk is actually of

dimensions small n which is larger than the dimensions yk which is m here and since small n is

more  than  m  we  have  seen  that  in  the  previous  slide  so  the  w  is  a  responsible  for  the

transformation.

So what will you the dimension of the size of the w it will be m cross m because this is a sixe n

this is sixe m so this is matrix with orthogonal columns representing the basis in some features

space so you want to find out this w that is the purpose of PCA is to find out what is this w which

will map x to y such that you not only have reduction of the dimension but you also have some



nice properties like in the new dimension m of size m to the sample yk will have some properties

of maximum scatter along those dimensions okay.

It is possible that certain dimensions of n are reluctant or certain dimension if n do not have a

scatter which represent the samples so in some sense they will be given less importance or you

can consider them to the eliminated in some sense not directly elimination but they will be giving

you very, very less importance in the transforms space and this transform space of size m again I

repeat less than m will be holding the maximum scatter in some sense.

So we will define the criteria which will be actually be minimized with the help of PCA so

remember this is the expression target w is the weight matrix which has to be obtained with the

help of PCA which will help us to implement this projection here and of course the number of

samples of k will be running from so this will be applicable for all the samples capital N number

of samples which are available in the larger or original dimension.

(Refer Slide Time: 13:40)

And to implement this we look at an expression of an scatter matrix St here which is given by

this particular example we have already defined what is this sk k is index for the number of

samples running from 1 to n and μ indicates the overall calls μ, μ indicters the overall class μ for

all  the samples so xk-μ basically  means you are subtracting the overall  class mean from the

number of samples correct so you are subtracting the overall class mean from the sums we will



look at the expression here xk-μ is can be considered to be column vector and xk-μ transpose

will be consider to the row vector.

And this resultant multiplication is also outer product okay the outer product that means this

product will actually give you n cross n sorry small n cross n because the dimension that is what

you will get some over all the samples so you subtract the mean from each samples subtract the

mean from each staple create the outer product some over all of them are that will give you this

scatter matrix for the overall sample okay.

What  is  scatter  matrix  properties  will  have?  It  will  have  some  properties  related  to  the

distribution of the samples remember it is non parametric value it just a matrix indicating the

samples which you have and an another expression of this  σij which can be consider as this is

nothing new to you it is if this is a element of the scatter matrix it can be visualized to be the

expectation of this so we have seen this scatter matrix which is another term of so if you look at

the expression you will actually going to get the co variance matrix.

Along the diagonal you will have the variances and along the off diagonal terms you have the

correlation between two particular dimension I and J for an arbitrary element I common j okay so

capital N is the number of the samples in the image and μ is the class mean for all samples of

which is any other data and the scatter of the transformed feature vectors will prove this very

soon after you have done the transformation using W it will be actually having the scatter as

given  here.  So  this  is  the  scatter  after  you  have  done  the  transformation  what  is  the

transformation?

(Refer Slide Time: 16:06)



Let us go back this is the transformation we are talking about so if capital S is the scatter of X

then the scatter of yk will be given by this particular expression here.

(Refer Slide Time: 16:16)

This is the scatter of the samples yk if St is the scatter of samples in the original domain of xk

okay so this we will prove this I and show why this is so little bit of analytics and we will show

that this type of w transpose St  multiply by W actually maximize the scatter along the certain

directions in a certain order based on PCA.



(Refer Slide Time: 16:41)

So we have to choose W that is our main aim in principal component analysis in PCA W optimal

this indicates remember you can choose any arbitrary W but it does not will not give you a PCA

it will give some transformation if you take a random instead of values for the matrix W as size

m cross n and you can project the samples you can give lower dimension mapping anyway but it

will not satisfies the criteria of maximum scatter along certain directions in reducing order will

see that.

Those properties with the after projections to like that one satisfy remember so we will look at a

optimal  value  of  W which  is  chosen to  maximize  the  determinant  of  total  scatter  matrix  of

projected samples so this is what we are looking at that if you choose certain W such that this



particular value is maximized St what we have seen in the previous slide is the scatter matrix in

the form the original sample X in the dimension N small n.

And if you choose a W such that this expression this determinant of this matrix is maximized we

will call that this W and Wi which are basically the columns of the W is the set of N dimensional

Eigen vectors of scatter matrix St corresponding to m large n Eigen values we can check this

proof in many books.
Including by so I m avoiding the proof here what this basically means is that if you look at the n

dimensional Eigen vectors of ST, so there comes our decomposition based on Eigen analysis or

as VT which we have to do we get the n dimensional Eigen vectors of ST using that if you

construct the W and if you do that corresponding to the m largest Eigen vectors.

Then you will actually form your W which will be optimal to give you these maximizing criteria

of  scatter  in  the  transform  domain,  so  this  is  what  we  are  maximizing  so  continuing  the

discussion.

(Refer Slide Time: 18:42)

On the PCA before we get little bit more analytics okay, so a typically if you talk of Eigen

vectors or Eigen images or certain Eigen the data of certain pictures and they are also called the

basis images are facial basis functions if the example of images but remember the images could

be of any other samples such as cars bicycles even humans let us say or buildings are any other



scenario,  but they should be typically samples belonging to the same class okay because for

which we are trying to get.

These categories it is not that you take all these several images which are there in your gallery or

you make a repository of your own from Google images you have and then start you can do a

scatter and do a PC on that but actually in some sense that will be meaningless it is done for the

particular set of samples belonging to a particular type of images may be of different faces of

individuals different car models different bikes different humans okay it could be of different

buildings.

This well required or different type of box let us say which is as travel back okay, so in other

some data says which have this different type of samples belonging to a set of similar classes, so

you are talking about images so they form the basis vectors and weight data’s example of face it

can be constructed approximately as a weighted some of all the collections which is that define

the facial basis or Eigen images and mean image all the face, so what it basically means the

sentence is remember.

You had the set of samples x in some n dimension and assuming that you have Eigen analysis

and find out what is the optimal W correct offer getting this W you project the samples x to y in a

lower dimension from m to m or m is less than n so you get a samples y these form your basis

images if the images are faces they are called the facial basis PC is a very common method used

for doing some sort of the classification or Eigen clustering with facial images it was proposed

by the in a paper if I am not wrong with the.

Date round 80s or may be late 70s by Turken Pin land PCA where it talks about Eigen faces then

there of course there are other types of beautiful papers like bell hammer about official faces

versus Eigen faces and all that so then PCA become very popular for representing faces of course

there are better methods now to do facial classification of clustering okay, so faces an example

but it could be again for any particular images so what you were doing is when you project the

samples of the face.

Or any other particular type of data to a lower dimension y  these form here basis images for

representation in a lower dimension and you also have a mean image of the face which you cam

compute from the original data that you can do remember we have done a mean subtraction



before doing computing the scatter matrix, so scatter matrix itself you are in subtraction so can

you get back your x given y can you get back your x given by remember what is y, y is W

transpose multiplied by x may be I will  write that expression on the back side of the board

because that is very important projection which you are trying to do.

(Refer Slide Time: 22:09)

Okay so we got that all of this equation so far this is what PCs is suppose to do projected from a

higher dimension to a lower dimensions space with m less than and of course but sometimes it is

taken much less than m W is obtained by a PCA which is basically solve this you know satisfy

this criteria that you are it is going to maximize the scatter in the projected space in the space

given by this y and this W is obtained from the Eigen vectors of this scatter matrix typically this

is an un bias scatter matrix.

Sometime you many are normalizing termed here okay for and the corresponding terms in this

scatter matrix is same as the covariance matrix and we will see how and SVT turn on the scatter

matrix we will help us to obtain so there is a proof which I am skipping which will you this

optimal  and  then  using  this  Wu to  the  corresponding  projection  from x  to  y, so  given  this

expressions now which we are just seen on the board and we also seen early in the slides, so you

can get y from x the next question comes is can you get  back from y S to some extent because y

is representation it satisfying some criteria of maximum scatter along certain directions okay the



choose the directions which of the maximum scatter that is all right okay and of course there are

few other properties.

But that it  is a main property which we have to consider now given those y which you are

obtained by doing a projection using W can you get back x that is the biggest question you

should be able to get back because W is an invertible matrix okay it is square it is meshed it is

based on orthogonal components okay and if you choose a square W you should be able to invert

it  and you should be able to get back x by back projecting y on to the other dimension the

question is only give back the original x of course.

The other thing which you keep need to keep in mind that you want to add the mean vector

which you have subtracted from this I am just to get the original samples back, the reconstruction

is  complete if you keep m = n that means keep correspondingly all the direction are what are the

called the Eigen vectors in y then you will get a perfect reconstruction back but in general we are

looking for dimensional reduction also with the help of PCA, so depending upon the number of

dimensions you use you will get.

Back a reconstructed signal x which will be a very close approximation of x but not the same x

remind you that okay it may very close, so face images if you take a two PCA go to a lower

dimension come back the faces may not exactly represent the same faces are look like the same

data  samples  which  you have  started  with  in  the  original  dimension it  will  look something

different will try to give some examples in the next class of how what are called Eigen faces look

like.

When you project the samples and then we construct back okay, so just remember this mine it is

a low dimension representation it will give an approximation when you project it back and you

must remember that we are talking about the mean image.

(Refer Slide Time: 26:51)



So look at the last slide this as it has any data can be reconstructed approximately this is what I

was trying to highlight as the weighted some of small collection of images that define the facial

basis are Eigen images, so these are my voice so you representing x as a weighted some of small

collection of images that define the facial basis or Eigen images so these are my voice so you

representing x as a weighted sum of all these voice and the mean image of the face which you

are subtracted to compute the scatter matrix, okay.

(Refer Slide Time: 27:12)



So the data form is scatter in the feature space through the projection set which is called the

Eigen vector  set  and the features  that  are extracted  from the training set  without  prior class

information, I do not have any class information available here hence it is also called a method of

unsupervised  learning  it  is  like  learning  without  a  teacher  we know the  difference  between

supervised and unsupervised.

Supervised  you  will  have  class  samples  here  you  do  not  have  class  samples  it  is  called

unsupervised so some time that is why PCA is also called a method of clustering okay, it will not

group the data as such but it  will tend to form groups depending up on the direction of the

maximum scatter, okay and it may try to discriminate between classes but you will be wondering

I will show an example what this means.

When the class information is not there what you will learn from the data that is the big question

you can ask now, so you are talking of unsupervised learning and for learning you need to learn

what are the class samples if that itself is not given to you what will you learn and what will be

the output so we will see that with examples that the main purpose of PCA is actually to extract

out and give a low dimensional letter which satisfies some criteria of maximum scatter along

certain set of dimensions.

Or the other applications is dimension reduction in terms of representation also, in some cases

this is driven towards a method of unsupervised learning okay, with the hope that if you are

extracting dimensions along maximum scatter along the direction of maximum scatter to be very



precise. The data will form groups along with their clusters or they will form groups along the

direction of maximum scatter as per the number of class. 

So if we have two or three different classes they tend to form groups along those direction and

with that hope we can call PCA very loosely as a method of unsupervised learning although you

must remember that is not the main aim that is only a secondary though and an application of

PCA which one can use actually you cannot learn anything because in the true sense of the terms

in the field of pattern recognition.

Because the class samples are not known, but anyway we will keep this is mind that the features

are extracted without prior class information and hence it is also call unsupervised learning.

(Refer Slide Time: 29:43)



This is an example which shows what this scatter is, look at the set of samples here so you have a

set of samples indicated by certain color and a symbol here you have another class second group

indicated by another set of symbols with different color, and if this is a two dimensional example

in 2D what you expect PCA to give is the first Eigen vector will give a direction as given by

these arrow which will say this is the direction and which I have the maximum scatter or the

maximum spread or the maximum width or the maximum separation.

Scatter, spread, separation whatever term you want to use to give it a meaning, but we will use

the  word  scatter  hence  forth  which  could  mean  separation  or  spread  as  well  okay,  in  that

direction  you  can  see  that  is  the  direction  which  is  given  the  maximum  scatter.  There  is

orthogonal  direction  in  fact  you have to  the figure does not  reveal  you but  this  direction  is

orthogonal  to the first  Eigen vectors so these two vectors are orthogonal to each other. The

second Eigen vector where you have the second highest or less scatter compared to the first one.

And remember since the two dimensional problem so you will have only two directions in which

you can project so you can basically or projecting into one direction and which you have the first

Eigen vector giving you the maximum scatter.
(Refer Slide Time: 31:05)

This is another example so this is an interesting example where it shows that the PCA is not able

to produce direction which we will separate the two classes if you look at this, if you look around

the first Eigen vector for the first example and project the samples on to this particular axis this



will  form a  clutter  here,  this  will  form a  cluster  here  and  it  should  help  you  to  do  some

unsupervised method of clustering or classification, okay.

This is not the case anymore you look at the direction of the maximum scatter which is this one

okay, along this if you project all  the samples there will be huge extend overlap. In fact the

second direction which will actually give you the separation.

(Refer Slide Time: 31:49)

This  is  another  example  using  an  image  set  of  contour  two  points  if  you  take  x  and y  as

coordinates if you take x and y as coordinates and do a PCA this is the direction in which you

will get the plot, this is an example from the squid home page for object shapes you will get the

maximum scatter along this particular direction of the set of x and y. What are the samples here,

the data is 2D but the samples are x and y coordinates.

So x and y one object point of the contour is one sample, second sample is x to y to the next

point and so on, so you will set of n samples take them do a PCA it will you give some direction

in 2D the first Eigen vector will give you the maximum scatter that is what this will give you. So



this illustrations are now showing you what is the direction of the maximum scatter or spread or

width of the data. Let us go to some analytics of the PCA now.    

(Refer Slide Time: 32:37)

And before that I will just give you some inputs which people use you in terms of interpreting

what is PCA it is also called a technique used to reduce multi dimensional data sets to a lower

dimensions for analysis, we already talked about this that it is a problem of it is also considered

as a tool or a mechanism to produce a low dimensional data or dimensionality reduction. The

application can be used for predictive analysis models exploratory data analysis.

It involves the computation of Eigen value to composition or as VD we talked about this of a

data set usually after means entering the data for each attribute we talked about subtracting the

mean of the data anyway. 



(Refer Slide Time: 33:19) 

For a data matrix XT you know that is only a data notation where that means all the samples put

together from that matrix X with 0 empirical mean because you are subtracting the mean, that the

0  empirical  mean  will  be  there  anywhere.  The  empirical  mean  of  the  distribution  has  been

subtracted from the data set that is what mean by the empirical mean.

Each column is made up of results from a different subject and each row the results from a

different probe, these are terminologies what it basically means is that if X is a matrix indicating

all the data samples put together then each particular column is basically indicating a sample

point and each particular  row is indicating a dimension, that means if you take the previous

example object of contour points on that object which we just shown an indicated one directional

the PCA.

The matrix X will be of dimension to then there may two rows multiplied by n as many number

of contour points which you have, okay. So this is only a notation sometimes these are called

subjects and probes or samples and probe. Probe means picking a feature okay, so each probe

picks up a particular value as a feature okay, so that is a terminology which is sometime used

okay.
Say so in this particular case for images each gravel value or a pixel itself could be a probe it is

an observation which has been made by a sensor so that could be a sample point as well. And this

will mean when you are doing this on X which is our data that means the PCA of the data matrix



will be given by remember you are taking the X and you are trying to actually project on to Y

using a XT and it is also given by this matrix where the SVD of X.

You can write, if you write the SVD of X as something like this okay, so you replace X by WΣ

the diagonal matrix and another set of Eigen vectors V we substitute here, where WTW it is an

orthogonal matrix it will vanish and you will be left with this. So this is another representation

but typical a most people use this representation, but this is the if X you take the SVD of X and

obtain this.

So basically what it means is W is obtained by the SVD of X, and it is the left set of Eigen

vectors because you have two sets of Eigen vectors W and V.

(Refer Slide Time: 35:55)

So the goal the ortho normal matrix W is to actually find this W out from the scatter matrix X

and then used to project Y.         

And is such that the co variants of y which is also given by this now we have a normalizing term

y yT this is diagonals okay so if you take the co variants of the w scatter of w you will have only

diagonal terms that is the basic gain and the rows of the w are basically the which is the basically

the matrix used for projection or pc or the principle components of x and they are also call the

Eigen vectors of co variants of x.



So unlike other transform the other types of transform which also exist  in literature like the

descript cosign transform DCT descript Fourier transform DFT descript well a transform DWT

Haddam hot transform other types of transform which exist also in literature including in the

field of signal processing matrix algebra TF communications and so on, PCA does not have a

fixed of basis vectors it depends on the samples remember w is composed set of Eigen vectors

you derive them from the data.

What is the data sample here? The capital x matrix that means if you change x, how can I change

x? Very simple takes of a few samples points or add a few sample points change a few set of

samples we have different x if you have a different x you take the SVD of that you get a different

w you get a different matrix w and you will have a different set of projections now okay.

So the Eigen vectors which are responsible for the radial dimensions it depends on the data itself

which is different than the other type of transform which is exist literature for other type of

application  remember  DCT  DFT has  major  applications  in  many  branches  of  science  and

engineering as well as descript develop transform for the case of multi resolution signal analysis

so they have basically set of fixed vectors or representation matrices based on which you do the

projection. But here it is it fell to data take manner.  

(Refer Slide Time: 38:03) 



And since we have studied so far that SVD is the main idea behind performing the PCA is based

on SVD we just have one slide here which indicates or gives you a revision of singular vault

decomposition if you are actually have donna skip of the discussion which was done earlier in

the class okay in one class when we discussed vector algebra and spaces. 

So SVD takes symmetric a of arbitrary size m x p and the theorem says that you can decompose

a x a unitary matrix w and another matrix t v here both are orthogonal matrices and a diagonal

matrices s given by this the calculation of SVD consist of this is just key point if this is not

lecture on SVD this is a key point it basically it finds if Eigen values in s and the Eigen vectors

of a a T which will get in the u and v respectively.

So what it means the columns of v are Eigen vectors of aT a that is what you will get in v which

is here and the columns of u which is this matrix are the orthogonal Eigen vectors of aaT okay, so

aaT is basically this matrix a, so you can form an aaT out of a and you are talking about the Eigen

vectors of that particular matrix which will be symmetric then you are talking about those Eigen

vectors as u and that will form my w in fact w is taken out of u okay.

And also the singular values in s or sometimes is in a σ in some notations you will find in my

slides also that this is written as a σ matrix are the square roots of Eigen values of either a

transpose a or aT a but interesting is that it will be arrange in descending order that means if is a

diagonal matrix  the top left  diagonal element you will  have the largest Eigen value then the



second value will have the second largest Eigen value and so on up to the least Eigen value at the

bottom okay.

At the bottom most diagonal element will have the smallest  Eigen value okay in descending

order and the u and v are also real matrices.

(Refer Slide Time: 40:11) 

Some important observations of SVD the singular values are the diagonal entries of the s matrix

and arranged in descending order which we know and they are always real numbers and the

matrix is also very real but sometimes some books will use matrix m, this is the same as matrix

which  we have  seen  earlier  the  right  singular  vectors  which  are  corresponding to  the  v the

corresponds to the vanishing singular values of m, so if you have some null Eigen values of in

this σ.

They form what is call the null space of m and the left singular Eigen vectors of which are there

in the u the correspond to the non 0 singular values of m and the span the range space of m. We

may not use the concept of range space and null space right now in our discussion but it will

come in our discussion in the next when we discuss LDA after PCA.
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Okay so carrying on the discussion of PCA which is also call the Karhunen – Loeve transform or

KLT it  is  equal  to  finding this  SVD of  a  particular  data  matrix  x,  we know that  and  then

obtaining the reduced space of the data matrix y by projecting x we have seen that, so x is

basically w y is basically wT multiplied by x, with the reduce space define by of the l singular

Eigen vectors this l is our m remember so representing that.

So you can actually chose a few set of singular vectors not the entire dimension and assuming

that the SVD gives you this and if w you have seen this expression a few slides back where y can

be represented by this w is basically the left Eigen vectors corresponding this SVD of x or you

can write them in this particular form as well okay.

So you can find out that the matrix w of single vector x is equal to the matrix w of the Eigen

vector of the matrix of the observed covariance’s xxT so if you look back to this slide here so we

are talking about covariance xT and it is given by this particular expression so if you substitute x

as this and xT will be basically vσT and substitute that here it is easy for you to see that VT will

cancel out.

And you will be left with this which can written in terms of this where d is the diagonal matrix

again which is the square of the singular values which you get here on the σ so the covariance of

x which you get of will be given by this so this is again a diagonal matrix and you have the left

singular angle vector of w on both sides.
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So carrying on the discussion by the PCA what is mean by the covariance matrix which we

started with discussion so we assume that the w matrix is of certain dimension dxd such that we

had this constraint and the covariance matrix is a diagonal matrix of y with WT  which can be

proven by this so if you look at the expression of the derivation here the covariance of y is

expectation of yyT substitute y =wT x in the expression here I repeat gain take w=WTX substitute

it here this is what you will get okay.

Then you get this and you take out the matrix w out of the expectation term here this will give

you the covariance we have derived that to be wet matrix which is d inside and so that interesting

that  after  all  you  have  covariance  of  y  which  is  obtained  remember  the  voice  samples  are

obtained by doing a PC on x which yield a covariance which will be strictly diagonal what does

it basically need means.

That you have the what is the d is the diagonal matrix which is the square of the Eigen values of

the diagonal matrix obtained by the SVD okay and you then have the scatter of the samples of y

which is maximum along the first direction because this is also happier in descending order this

will appear in descending order and you will have the maximum scatter along the first dimension

the second maximum dimension

And so on and that is what covariance of y indicates and if the covariance is strictly diagonal

what  does  it  mean  half  diagonal  terms  are  should  be  zero  the  covariance  matrix  is  strictly



diagonal then the hold diagonal terms are zero that means what are the diagonal terms σij being 0

that means there is no covariance no relationship between the two dimensions because they are

orthogonal to each other okay and they are correlation becomes 0 means that 1 data is completely

independent of the other one, so you are projecting on to certain dimensions not only you have

maximum scatter along in 1st and the 2nd and so on you also do not have any correlation between

those 2 dimensions you have projected on 2 dimensions feature space where the dimensions are

independent of the other.

1st is independent of 2nd and 3rd so on the same is to with the 2nd independent as well as the other

one,  so  if  you  take  any  2  dimensions  I  and  j  after  pc  in  a  transform  domain  2  arbitrary

dimensions a and j I0 = j they will not have any correlation and that is what I defecated in the co

variance of matrix y which will give you a diagonal matrix that is what you get here, you can

also  prove  this   W  x  COV  Y =  COV  /W  should  actually  you  can  derive  from  that  the

corresponding singular values x corresponding weights.

Is a simple analysis prove I will leave this is an example for an assignment to derive this because

the co variance matrix is diagonal that is what it will give you this particular matrix.

(Refer Slide Time: 46:29)

Let us take an example of a PCA a hand worked out toy example, you take an example of 2d

because sorry the data is 3d just 3 sample points of course you can take many and this is the

overall data sample. You can say this is a column and gives you this x, so what is the job of PCA



how do you do PC? Before s variance you must not forget 1 important step which is to = the

mean of the data.

So let us calculate the mean of the data, the mean of the data is this particular sample, so it is 3d

problem number of samples is also 3 and each column is an observation sample and each row is

the dimension, this is the mean of the samples. So that is the sample mean μ is 1/3rd what is how

do you get the value of 1/3 + theses 3 okay this is the 1st dimension what is 4 -1, -2 1/3 that is 1/3

or 4/3 3+ 1 = 4/ 3.

This is 2+ 1 3 6/3 that is very simple that is how you calculate the mean – samples that means

you take the each of these individual samples x1, x2, x3 – mean this is what you get I will leave

this as an exercise to check it out, this is also same as taking each of the column and – vector.

now you construct the SVD create the sample x okay so the data sample x is become this, how

do you get this take these 3 columns one after another and from this new x.

Let us look at the co variance term this is xt /2 remember this 1/n-1 so that is how 2 comes and I

am giving you the answer here you can actually user any mathematical tool box to compute the it

is 3 x 3 matrix it will not be difficult for you to actually x and calculate x t which you will getting

at this. so you have done the co variance of  matrix for the scatter as it is called and we will do

SVD of this scatter matrix in the next slide.
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So this is what we have done so far this is the scatter matrix example okay you get the mean

subtracted data and you can actually compute the scatter matrix by individual standings of this, if

you actually follow this expression to compute this scatter matrix from these data samples –

mean and construct what is C1 xt of this.

So the 1st term of this expression x1 – μ, is this compute this expression outer product is this

similarly for x2 you get the C2 and similarly for x3 you get the C3. I will repeat again 1 st term of

∑ you get this C1, 2nd ∑ you get this and x3 for the 3rd term of this k = n to 1, 3 terms c1 from x1,

c2 from x2, c3 from x3 some all of these are what you will get. You can check few examples if

you want 1 + 1 + 0 how do you get -3, if you some of these two elements are up – 5/3 this is –

4/3.

So it will basically give – n/3 to -3 at these two elements are you will get 6 also, same thing i

applicable for last row as well t this two element is -3, so that is very simple and then you get the

co variance which is σ/2 which is this and this I repeat is a same co variance which you obtained

by the σ, so get look back this is what you got. Look at the 1st term it is 62/6 just look at the last

two it is easy to verify here it is symmetric matrix, so this will be 3 – 3/21. 

So check whether this value is correct now, 3 – 1.51 same as this, so you just have to divide by 2

you get the answer so you can compute this scatter matrix either using expression or co variance

one so it will give the same.
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So this what the scatter matrix looks like in the last slide this is what we have and if we do

scatter matrix given by this and sometimes people take xt you will get the matrix this is done

sometimes as dimension is too high and that is to both.

(Refer Slide Time: 51:52)

So I am showing this x let us look at this is the actual one which has been proposed as a matrix

but this is just a variant and let us look at if the examples are same, and look at u both the matrix

but look at the diagonal matrix, you can either take xt or tx and co variance scatter in whatever

way may be the diagonal matrix will give you the set of values. The vectors will not look the

same so you must actually be very careful that you take the look into this slide x xt.
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This is another example okay this is 6 points they are arranged to create this x so quickly run to

this example 2d problem in 2d with 6 sample points again each column is on observation, this is

the mean vector 1st row / 6 will give you this, this is what you have this is the mean subtracted

value of this, that means you take all the sample point of this, that means you take all the sample

points / corresponding vector.

This is the co variance xt something different, but you can also do this xT x this is the correct one

again the co variance of xT x as well subtracted and let us look at u s and v, but look at s here as

well okay. Look at the 1st wagon vectors, the wagon are same okay, the v will be different you

can also see here that this being the v=u here because this is added to the symmetric matrix this

is also symmetric this is also symmetric matrix so in that case you can use the Eigen vectors

from any one of these
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So that is what to do with PCA there are other types of variances of scatter matrix which are also

available which are also available in the literature and we will look into those and see examples

of another type of Eigen analysis and decomposition which is possible and then compare both

with an example where you look at this scatter just look at a scatter matrix which is called within

class scatter metric.

This expression is now little different then what ever we have seen so far we had a scatter matrix

where in probably we had subscribe w we had one σ and xk-µxk-µT  what is different in this

expression will  you see the mean has an index I for a particular class okay and this index I

transform  1  to  c  number  it  seems  this  scatter  matrix  now  requires  that  you  have  samples

belonging to each and every class separately grouped to compute.

This within class scatter matrix that means what is the scatter within a particular class that means

you must know samples which belonging to a particular class that means if you have pictures of

ten  different  persons  of  face  images  or  what  are  called  facial  image  samples  then  for  each

particular class or person in this particular case you must root this samples belonging to the

particular sample and then compute with the expression.

Because you cannot compute µi else you know the samples which belong to the ith class so xk

are samples belong to the class xi so the class level must be given with this  so I am not doing a

peace A you are doing some else here which will describe soon so you sum them over all classes



and for each class you take the sample belong to the particular  class particular  class xi and

compute the scatter the rest of it is same once you have the class mean.

The greater sample xk belong to the particular class we can compute the within class scatter

matrix the W here indicates not the wet matrix the within class is incorrect for the similarly you

have between class scatter matrix it is the scatter of the expected vectors around the mixture

mean of the entire mixture look at this expression now you have the overall data mean which you

have used for PC earlier you also have individual class means.

And using these means you form this expression which is an outer scatter of the class outer

product of the means multiplied by the number of samples summation over all classes  so you

have within class scatter matrix with data samples you have between class scatter matrix which

is mainly dependent on the class means and sometimes causally people call that inter class and

interact class scatters.

The inter  class scatter  basically  means within class  scatter  interclass  scatter  basically  means

between classes what is the scatter okay so if you have this expressions computed as SW and SB

it has certain very nice properties I will be able to discuss all of them due to limitations of time

so what is within class scatter it shows.

The  scatter  of  samples  around  the  respective  class  expected  vector  class  means  so  around

particular mean what is the scatter here how the class means us scatter that is the second term SB

the b stands for between will keep this notation of W indicating within class scatter b indicating

between class scatter.
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And the overall class scatter which we have seen the overall mixtures scatter or data samples is

the summation of this is just a property the proof is given in many satirical books okay and the

criteria formulation of class separable need to convert these matrix into a number so we will see

how this is done and this number should be larger and then scatter is small why do you want to

do.

This forget this factor about converting matrix into number we will see how do this we will now

form  and  different  criteria  using  SW  and  SB  and  remember  when  we  are  talking  about

classifications versus clustering much earlier in this course what did we say that the classification

problem becomes easier and job of the classifier becomes easy if the within class scatter is less

and the between class scatter is larger.

If there are two class sample class 1 and class 2 class a and class b you would prefer or you

would desires to have a scenario were the distance between the individual class means are much

wider and the individual class scatter for before a particular class a  and class b they are not large

then this samples will not overlap leading to easy formulation of a very good decision boundary

linear or non linear whatever the case may be between the two class scatters.

So you want a larger between class scatter and as smaller interact class or a within class so it

typically if we go back to the expression of SW and SB I want smaller values of SW and larger

values of SB that will be the bases of my optimization or criteria which I want to make in order

to have projection dimension



And typically examples of such things are these okay let us take an example of something like

this trace of S1/S2 as a criteria as these SW and SB so I want one of them to be larger one of

them to be smaller the SB between class scatter should be largest when the numerator of that

expression and within class scatter should be small.

(Refer Slide Time: 01:01:02)

If you are heading towards this but if you cannot convert it to scatter quantity these as variances

of this so this yields us to new method of classification which is called supervised which is under

falls under the category of supervise learning because the learning set is level you want samples

of different class available to you to compute the within class and within class scatter is called

the linear discreet analyses.

And tries no shape the scatter to make it more reliable for actual classification so now we are

trying to select W which will maximize the ratio of between class scatter versus with class scatter

that is SW and SB and the between class scatter we have already defined them as this for mean

for class I that linearism the number of samples which belong to sample xi what is the within

class scatter this is defined as this earlier.

And what we want to do is maximize the ratio that means we will take SB/SW and that ratio we

want to maximize we must select some projection matrix in which the in that projected domain



the SB scatter becomes large and the SW not even the ratio must be larger for classification to

work in fact to compute.

This scatter matrix we need the class samples hence it is called supervised learning unlikely the

because you did not need to class labels and when you do not have class labels you can apply

PCA and when you have class samples you can apply either PC or LD and in fact we will see

why the LDA method I think we will stop with thing.
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