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In this last section we were discussing concept of supervised method of pattern classification

which is based on the fishers linear discriminate analysis or LDA it is sometimes called FLD as

well in the pattern recognition literature and we are just introduced 2 different matrices the one is

within  class  scatter  matrix  and  there  is  between  class  scatter  matrix  we  will  look  at  our

expressions one more time and then look at see some important properties and expressions of

LDA and we will winde up this class with a few examples which can be hand out with you okay.
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So let us look back what we are saying is LDA is a method of supervise learning it is one of the

classifiers which needs set of training samples for learning a set of parameters in this case the

parameters are SW and SB the within class scatter and the between class scatter expletively the

learning set is labeled unlike the PCA where we had unlabeled data and that was also called

unsupervised learning so it is a class specific method in sense it tries to shape the scatter in order

to make it more reliable for classification.

Remember in the case of PCA we are interested in trying to find out the directions in which the

maximum scatter of the entire data exists that is what principle components analysis or PCA does

in case of LDA we want to maximize class separability  okay that  means in some scene the

between class scatter if you take a 2 class problems we want to find a certain direction of the data

within the data certain dimension in which the distance between the 2 class means or that two

clusters of the 2 class become large or become more.

And  in  the  same  direction  the  within  class  scatter  becomes  less  okay  if  you  recollect  the

animation  slide which we had long ago in  earlier  class  when we were trying to  distinguish

between classification verse clustering we also way say that it is better and easier for a classifier

to perform better if the between class distance or the distance between 2 clusters centers or the 2

class themselves is very large and the clusters are very compact.

So if you can find such dimension or set of dimensions what can be considered also as sub space

okay with respect to the origin higher dimension of the data if you can find sub space where the



directions point out that we going to have or is it satisfied with satisfies a constrained that the

inter class distance is very large and the inter cluster distance is very small that is what is trying

to achieve okay so that is what is the meaning of the sentence which you see now that the class

specific  method  it  tries  to  shape  the  scatter  in  order  to  make  more  reliable  or  better  fort

classification okay.

So this is accomplished with the help of trying to find out a weight matrix w which maximizes

the ratio of between class scatter SB and with class scatter SW where the terms we will define

them again for your ease of understanding  that this is the between class scatter SB if you at the

expression here the NI is the number of samples per the for particular class Xi let us say the class

label is Xi μi is the mean for a particular class Xi and the μ is the overall μ of the data okay.

So it is something so if you look at Py- B μ it is basically that the individual process centers are

normalized with respect to the mean okay of the entire data set and summation over Ni will

actually give the number of samples but a particular classes are in weight age C or c here ware

whatever you see is the number of overall number of classes okay so you need to sum this over

al class.

That is the between class scatter let us look the expression once again for SW which is the with

class scatter  matrix you need to sum it over all class all  right but you sum it over now this

expression is similar to the PCA it is an outer product of the samples with respect to μi that in

case of PCA where the overall data mean here which was μ the same μ which you see here on the

left hand side would have occurred here in the case of PCA but in case of LDA the you have the

mean subtracted from the data which is the individual class means.

Okay the μi is the mean of the class Xi which you have to take that and take the outer product

you sum it over all the samples for particular class in fact Xk belongs to the samples set Xi that

means basically Ni the summation will go over Ni number of times and the over c number of

class okay so the total number of summation term which will be having is basically N multiplied

by c SW and SB have the same dimension as the scatter matrix we had for PCA the dimension is

the same.

But the matrices themselves are little bit different okay if you look at the expressions both are in

some sense the outer product put one of them is computed with respect to the means only the



other is computed with respect to the samples means subtracted with respect to the class specific

means  okay the  PCA we subtracted  the  overall  determine  I  am repeating  again  here  you're

subtracting the class means.

(Refer Slide Time: 06:09)

Okay so SW and SB is what you have okay and nest so what we are trying to do is find out an

optimal W and we will just talk a little bit later on that what happens if SW is singular but

assuming that the within class scatter matrix is nonsingular you try to find out an optimal value

of  W which  maximizes  this  expression  okay  so  we  try  to  find  out  a  W which  maximizes

expression and in the process of doing so you get an optimal W which can written in terms of a

set of Eigen vectors as give here m sort of Eigen vectors.

and they are the Eigen vectors of this particular matrix which is SW-1 x SB in fact what you are

doing here is trying to find out the m largest Eigen vectors of this characteristic equation which is

the if you think of SW-1 x SB as an overall scatter matrix S then you are actually trying to find

out the Eigen vectors and Eigen values λ is the corresponding Eigen values of this particular

matrix okay and this is the reason why it is essential that the within class scatter matrix is a

nonsingular because you need to obtain it is inverse of that matrix then multiply it with SB and

then find the corresponding Eigen values and Eigen vectors.

This is the basic approach for FLD or LDA correct and I do that you need to find pretty inverse

of the matrix SW the question comes is SW always singular we will have a look at it very soon I



will just give key points with respect to some properties of within class scatter matrix SW. So

there are actually at the most C+1 – non zero Eigen values in the λ so if you look at what is

called the Eigen spectrum of this particular matrix the upper bound of m here is basically number

class – 1.

So the restriction on the number of non zero Eigen values and the corresponding Eigen vectors

for the W will actually depend on the characteristic or properties of SW weather it is singular or

not these are some of main criteria which we need to follow.

SW is singular if the total number of samples N < Dimension D remember this total number of

samples not the so we can say that this is the average number of samples for class multiplied by

the total number of class okay that will give you that total number of samples N it is rank is at

most N- C okay where C is the number of class so you cam see that the number of samples here

is going to dictate as very important say on the singularity or rank of SW.

Typically  if  the if  you have sufficient  number of samples  you do not  need worry about  the

singularity  of SW if  you sufficient  number of samples  very large okay but there are  certain

applications where there are a death of the number of samples both for a particular class and for

all the data samples but together or all the class put together a typical example is the case of face

recognition problem, in the case of face recognition the dimension it typically may go to a few

millions.

Okay it is very large okay in fact the resolution or size of the image N2 if you take as not this N

put if you take this 640/4 at team age 640 x 4 it will be the dimension of the problem weather

you are doing PC or LDA now you will not have those many samples per individual or total

number of cases available in your data base.

If  you take  let  us  say an example  of  a  very large  data  base it  may have even a  few 1000

individuals you may have around 10 let us say 10 to 100 at the most samples per particular class

in fact there are certain situations where you have just a few samples may be just about half does

not 10 samples per particular, for a particular class in this case the class is a particular subject.

So in such a case definitely what will happen is the number of samples n will be less than the

dimension, if you look at the slide.



(Refer Slide Time: 10:29)

This  constrained  will  not  be  satisfied  in  all  applications  or  situations  of  pattern  recognition

problems, all problem this may not satisfy in certain situations if the number of samples is less

than the dimension or the dimension is much larger than the number of samples this becomes

singular, okay and it is rank is at the most N-C. We will move at with this assumption that the

rank is N-C for the time being we looking into this problem.

However, if the number of samples are very large and it exceeds the number of dimensions in

certain  cases  which  it  is  possible  yes,  in  such  cases  you  do  not  need  to  worry  about  the

singularity  of  SW, but  there  are  certain  situations  where  you need to  worry  the  number  of

samples are less typically those are the cases which are called the SS problem which is called the

small samples size problem and the number of samples being very large per class or for all the



classes put together that again is less than number of dimensions in such a case you cannot invert

SW.

Okay, it is not a full rank matrix it rank is restricted by the number of class in number of samples.

Solution to this such problems if you have single in SW is the following, project the samples to

low dimensional space and to do that we use our method of PCA which we have studied in the

last class to reduce the dimensions from the feature space from the original dimension D to a

dimension mxc.

And one that is possible to apply the standard Fisher Linear Discriminate criteria or FLD to the

reduce dimension C-1, okay. So in such a case when you are applying PCA which reduce the

dimension that W optimal value of W can be visualized as that you have done a PCA earlier and

the corresponding W which you would have obtain by the FLD criteria.

And the PCA criteria for getting the W for the PCA is given by this where ST is the original

scatter matrix. Remember we had an expression earlier which said that the scatter matrix ST is

the sum of SW+SP, so ST is SW+SP and W FLD can be written as an expression you can see

that this is the similar expression to what you are we got earlier expect that you have the PCA

done before the LDA.

So that corresponding matrix comes and sits as a pre and a post multiplication with respect to

SW, so if you do this method under the condition that N is less than D SW is a singular you want

to reduce this dimensionality of the space go to a sub space where you can reduce the dimension

corresponding to the rank of expected rank of the matrix. Then you do a PCA first and then do an

FLD to reduce the dimension and people typically take C-1 dimensions for the FLD.

(Refer Slide Time: 13:19)



Okay, so let us look at some hand worked out example this is a very synthetic diagram drawn

with respect to two data sample points and we had this similar diagram in the case of PCA where

the PCA would have given a direction along the maximum scatter or variance of the data samples

which have been along the direction orthogonal to this vector okay, so that along this line along

the data samples as this arrow indicates that would have been what the PCA directs.

But the LDA will give a direction in which you are expected to have the maximum scatter that

means now if you project the samples point they expect to the red points to be in the left hand

side the blue points on the right hand side. Although you may not have separability in this case

because data samples are very nearby alright but this is the direction in which you will have

maximum separability or the condition of SW-1xSP is maximized the correspondingly whatever

with ST.

(Refer Slide Time: 14:16)



Let us take this hand worked out example it is easy to do this calculations in a sheet of paper but

of course you can keep your calculators ready if you want, so let us take this example of data

sample points in 2D way we are taking an example into 2D because it is easy to visualize so

these are set of x,y points then the top you have set of x coordinates and the bottom you have set

of y coordinates you have them for two different classes so the class 1 is the class level  at the

bottom, so for the class 1 you have 7 points, for the class 2 you also have 7 points and the data

samples in the x,y two dimensional space we look something like this.

Where you will have the data samples to the left given by this blue points here and the data

samples to the right as identified by class number 2 will be given by the set of green points. So

let us try PCA first before trying LDA, we will try LDA also by using the class information but

let us shut off the class in 1. 

Let us say I give you a scatter so forget the color of this code, color code for these two different

classes let us take all of these as a set of points as set of black markers let us say forget the color

and let us try PCA that means you have just taken the data samples and ignoring the class level

and we do that this is the overall data mean for all the samples, okay which can be averaged out

by taking the average of all x values which you will get as this.

Average of all the y values is what you will get as 5 okay, and this will help you to compute the

overall  covariance of the mean subtracted data from this that means what you need to do is

subtract  from each of the sample points the mean and then do an XT to actually  obtain the



covariance matrix it shall be a 2x2 matrix as given here. Because it is a two dimensional data so

that is what this is size or dimension of your ST or covariance matrix or scatter matrix.

The corresponding Eigen values obtained after a singular valued decomposition of this matrix is

basically this, which basically shows that along the first dimension you have quite a bit of scatter

along  the  second  dimension  you  have  then  you  know  maybe  much  a  less  than  the  first

dimension. What are the corresponding Eigenvectors for the first dimension this is the dimension

of the Eigen vector we will draw that in this diagram very soon.

You will have it up and this is the second Eigen vector, what do you expect along the first Eigen

vector you should expected to have a large class scattered because the Eigen value is very large

along the second dimension you will also have a scatter but it would not be that scattered or that

stretch as with respect to the first Eigen value okay. 

So if you look at the diagrams here the Eigen vector shown here is given by the same color along

this  particular  direction  so it  basically  says that  along this  direction  you have the maximum

scatter of the data which is quite obvious if you look into this the overall data seems to form an

elliptical pattern in terms of a scatter and this seems to be the major axis of that particular scatter.

What  is  the  other  dimension,  which  is  given  here  so  this  is  given  by  also  the  blue  color

corresponding the same color code I have used for displaying the values of the, components of

the Eigen vector as well as the vector shown in 2D so you can see that along this dimension you

have very less scatter of the data samples which is probably almost 1/3th or even less than these

scatter which you have along that.

So what PCA is giving you are two different directions okay, as we are discussed in the earlier

class along the first direction you have a very large scatter along the second dimension given by

the PCA you also have a scatter but it would not be as large as the first dimension. How much of

the scatter exist in the second or even third if it exist in this case of course we are just discussed a

hand worked out example in two dimension.

But  if  you  take  a  N  dimensional  problem  you  will  get  a  scatter  matrix  of  dimension  N

corresponding N Eigen values and N set of Eigen vectors. So along the first Eigen vector, second

Eigen vector, third Eigen vector and so on you will have as diminishing scatter, the scatter will



be going less how much is it happens down will actually depend on what is called the Eigen

spectrum or the distribution of the Eigen values along the diagonal of that diagonal matrix.

Okay, so in this case is a two dimensional problem if you look here that this scatter along the first

is much larger than the second which is expected and the ratio will probably tell us how much

more is the scatter along the first dimension here or the first principal component that is the way

one  should  say  precisely,  this  is  the  first  principal  component  this  is  the  second  principal

component you could have a third if the dimension was three.

And the corresponding Eigen vector it has given here and the corresponding Eigen values are

given here, this is what PCA will do. But as you can see here that if you project the data samples

along the first Eigen dimension you will not have separability in fact is the second dimension of

the PCA or the second principal Eigen vector which will give you a separability.

So PCA should not be use for classification in general, we talked about this earlier it is typically

used for dimensional reduction for data representation okay, are trying to find out a sub space

where you can have maximum scatter up to that point is it okay. As for example you have just in

today’s class that  PCA supersedes LDA comes before LDA because you want to  reduce the

dimension in certain cases when the SW the within class scatter matrix is singular, okay.

So PCA can come before the LDA to reduce the dimension that is one of the applications, if you

want ot actually obtain class separability and if of course class labels available you better try an

LDA rather than the PCA, so let us use this example in the next slide and move ahead.
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And try to use this class information which is now level with 2 show that the data on the left side

belong to the class1, the data on the right side belong to the class 2 this is the distribution which

we had for class 1 and class 2 in the previous slide as well where we use the sample for PCA

without the class information, now using LDA, now using class information we will perform

LDA on this dimension on this data.

Look at the Sw okay, so we have given the expression earlier but I am just are giving you the

values, so you can use the entire data set to class problem 2d to compute within class scatter 2 +

2 within between class scatter matrix is given here. The inverse of Sw in this case it is non

singular okay because you have enough number of data samples to dimension of the problem, os

it will not be singular here.

So inverse of this matrix I will leave it as exercise to do that it is simple 2 x 2 matrix multiplied

with Sb okay, os if you look at the inverse of Sw which is non singular matrix in this case as

number of data samples is large compare to the dimension this is what you get. So what is the

corresponding I can get the composition of this okay? Eigen values of Sw inverse are given by

this, so what does this basically tell you, that along the 1st Eigen vector you will have a large

scatter.

You will this scatter is 0 the separability is 0 of the data and the corresponding Eigen vector is

given in, so let us draw them on the data, so this is the 1st corresponding Eigen vector given by

LDA remember  PCA gave us  the  direction  which was along the  maximum direction  of  the



scatter, LDA is given along the direction of maximum separability this is the direction as given in

the red. The corresponding color as we use also to show you the direction what about the, I am

not shown you the other direction but let me tell you this direction will be orthogonal to this.

So it will be along this direction in which is also similar to the direction given by the 1 st principle

component of the PCA let us go back to have a look, if you look at the PCA Eigen vector here

and if you invert the sign it is 0.8 and 0.6 which will give you the direction towards the upper

right and it same as the 2nd Eigen vector direction almost similar it is not same it is not identical

but along the similar direction you have a scatter which is 0.

So I am not drawing the second Eigen vector the main reason being that you are not expected to

have any separability or the criteria is null so in this particular case we will take only the 1 st

dimension to predict the data to have the maximum separability. 

(Refer Slide Time: 23:15)

Let us look at the effect of the inter cluster distance on the Eigen vectors and the Eigen values as

an example. Now let us assume that these on the left hand side you have the within cluster scatter



and  between  cluster  scatter  matrix  the  data  which  you  have  just  discussed  in  the  previous

example okay these are same values okay, you can check your notes that these will be the same

values obtained from the data.

If you go back you can see here this is what Sw and Sv is for this particular data, so you have

kept that on the left hand side, on the right hand side I give you the same Sw but different Sb and

I will tell you the mechanism by which I obtain this, what I did was or what you can do is? You

need to actually separate the 2 data out okay.

The data sample points which you have seen in the previous slide you need to bring in more

separability will show that with the diagram. So if you do that basically give it a shift along the

direction of not the maximum scatter but the maximum depth on separability okay so that can be

done and I will show what I am mean by that. When you do this keeping the within the class

separability  same  within  class  scatter  same  we  consider  this  is  change  or  increase  in  the

corresponding values of the between class scatter.

What this basically means I have not changed the distribution of the individual data samples but

taken the two class bin and the separated them a part okay I repeat again, kept the inter cluster

that means within class scatter  of each particular set of class samples I have not change this

scatter of the data points but I have change the class means. Let us say one of the class means if

you change to bring in more separability this is what the result is going to happen.

That means you will have a  larger between class scatter matrix and the same as W we will go

and do Eigen for both the net results is following look in Eigen spectrum of the original data we

will compare with this whatever we have now okay. So I do not make the 2nd component of the

Eigen as non 0 still keep it 0 but there is increase in the γ1 which is basically the corresponding

first  Eigen  value  along  the  first  principle  component  obtain  by  LDA  let  us  look  at  the

corresponding Eigen vectors.

Well there is not much of a change okay change is what you will see in the 2nd or the 3rd decimal

places of the corresponding Eigen vectors, so the directions more or less and the magnitudes

have remain the same let us look at the data okay. this on the left hand side what you see is are

the data points which are given to you earlier in the previous slide as the previous example and

that the corresponding component is given by 1st  Eigen vectors.



 We will never consider the 2nd Eigen vector because the corresponding Eigen value is 0, so this

is the 1st Eigen vector, this is same case here minor change in the value which respect to the

Eigen vector here, so it is almost the same but look at the separability, this is separately which I

brought into the data actually have a large value for the both the diagonal of the diagonal terms

between the class scatter matrix compare to the data that which we had earlier and the net result

is larger.

You  can  see  that  the  separability  of  the  data  between  classes  getting  deflected  in  the

corresponding Eigen value, so this is lesson so in some sense you have maximum separability

along the 1st dimension the less you go to the 2nd and so on and after some point of time you may

not have any separability on certain dimensions which are you know beyond C – 1 the number of

classes = c here = true.

So c – 1 = 1 so you will have only 1 dimensions so you will have only 1d in which you will have

separability and you will not have any separability after c- 1 Eigen vectors that is 1 c -1 is non 0

and 2 = 0 but if you bring in more separability of the data it gets deflected in the corresponding

Eigen values,  it  will  shoot up if the class separability  is more or the inter class within class

scatter also gets reduced.

This example shows that between class is the spread or the distance is more diagonal values are

going higher the same will happen within class scatter matrix goes down that means the data

samples are much close to the mean themselves for a particular class that also can happen.

(Refer Slide Time: 28:10)



So this is the example which shows that if I take the data points and project it along this direction

well there is a little bit of scale problem here which the direction is not shown problem but in

way it is more or less accurate here this is generated by a small program. So if you do this you

can see the separability here that means all the blue points are projected to left hand side, so what

you are seeing as the x axis here is the axis along the direction of the principle Eigen vector

given by LDA.

So all the blue points will pay from left hand side as it is here all these green points are projected

here and there is some degree of separability between these 2 data samples okay. Look at this

particular  data  and  if  I  project  now  this  on  the  corresponding  Eigen  vectors  you  see  the

separability  now, corresponding principle  Eigen vectors  1st principle  Eigen vectors  given by

LDA, so if you projects this blue points they all form a very strong cluster here.

The corresponding green points from another cluster here when you compare the separability on

the right hand side which is respect to this, not only the separability is larger but the within class

scatter, you look at the scatter of the blue samples here compare them with the scatter here, look

the scatter of green points, look at the scatter here. So both the examples show that between class

scatter as increased and within scatter class as come down.

Remember of course one must be careful when comparing these 2 plots remember one thing here

that they are not to the same scale, now this is of -3 to +3 so it is basically in a range of 6 pixels

or 6 units in dimensions here the dimension is so in a scale of 10 the separability here if you say



will be up to 5 units in terms of length it is a huge pressure and this sub pressure is about two

units more than one so this separation is also increased and within class scatter reparability also

come down these are  the two lessons and that  get  deflected  in  the Eigen values  not  in  the

corresponding Eigen vectors.

(Refer Slide Time: 30:38)

To wind up let us take an example where I increase the number of classes to three okay so what I

have done the distance distribution of points is same you have set of points in blue corresponding

to class 1 set of points in green corresponding to class 2 and four points in red corresponding to

class 3 okay we will quickly go through SW and SB since the number of classes is 3 you can

expect that you will have seperabilty in two dimension c-1=2.

When you perform Eigen decomposition SW-1xSB you have both the Eigen values which are non

zero now and the corresponding Eigen vector are given here so you have some small amount of

seperabilty in the other dimension which is second dimension but look at the first dimension here

you have high degree of seperabilty.



Which is reflected in the corresponding Eigen values this is the first degree of separation so you

can see this is the class one, this is class two and class three so off course this is the best possible

dimension in which you can project the samples to have a fear degree of seperabilty you may not

have a seperabilty around the dimension so that is why you the less value of degree of Eigen

value.

(Refer Slide Time: 32:03)

When you project this sample here in the first Eigen vector this is what you have okay that

means again I have kept the inclination of this direction same that means so take this blue point

project it here take the green point project on this take the red point project it here this is what

you have okay if you tile it and show here this is the seperabilty you have a good amount of

separability with respect to the blue class as compared to the green.

And the red points there is some degree of overlap here between the red and green points which

you cannot probably over come so the red point here is the blue point projected here is original

point at appoints here in two dimensional space they all project here so this is fake degree of

seperabilty in the first Eigen vector obtained by LDA the same may not be true in the second

Eigen vector you can see a huge degree of overlap.

This is along the second Eigen vector as given by the green arrow along the second Eigen vector

when you over lap you can see a scatter which is overlapping in all three different classes so this



is another example if possible to hand out using a calculator where you can find that the Eigen

spectrum or set of the Eigen values are obtained by SVD is going to give you the degree of

severability between classes okay.
(Refer Slide Time: 33:19)

 So in such cases one is to do while the other methods are supervise learning which is called

independent component analysis one can even try that is to separate data to wind up this class I

have a put forward a list of

(Refer Slide Time: 33:34)



Some may not be extensive exhaustive but some adventurous are the technology over the last

decade or some advent in the field of pattern recognition which is taken place over the last decay

and I am just going to name them may not discuss at all any one of them in the detail as talked

about by professor murthy and myself that is a course for the beginners   in the field of pattern

recognition.

And the hope you get encouraged in this field of study from these lectures read books and read

much more advanced topics which have come out in several other books as well as advanced

literature getting published in which conferences and journals so I will look at them but let us

look at the list of techniques which we may not have covered and they are some reason advanced

people adopts of computing methods based on nuke technique we talked a little bit of perception.

And new networks you combine that with reasoning century you could architecture for class

discriminately rich to in fact these are the methods which are used often to discriminate between

classes which are  overlapping some of them do not Gaussian distribution and so and so far multi

classifier ensemble combination which involves both decision and feature fusion this actually

talks about trying to use all  set of different classifiers together to form and if a decision the

classifier themselves different.

In terms of architecture  or they could be trained with different number of samples there are lots

of theories of this people also work on the reinforcement and probalastic learning there are which

try to handles small data size problem so what is called as small sample size in the field of new



network and pattern recognition it can work on generalization capabilities of new networks and

pattern recognition algorithms people also work on revolution computation which is very near it

is a sub soft computing.

There are methods based on decision trees multi objective clustering and most of the clustering

algorithms which you have discussed tries to minimize one criteria if let say take k means it tries

to reduce some sort of aquarium distance with respect to the mean but there are but clustering

algorithms which actually tries to minimize one critic or try to minimize one criteria with by

keeping some other constraint.

So those are some examples of multi objective clustering very recently people are also working

on man force based learning and optimization where people take ideas from the areas of the

differential  geometry  and  topology  people  who  are  genetic  algorithms  pervasive  computing

neural  dynamics  they  support  vector  machines  and kernel  method modern  machine  learning

methods have contributed a lot in the field of pattern recognition.

In fact there are certain areas in which machine learning and pattern recognition overlap quite a

lot where you have to discuss as pattern recognition some of the terms and methods are semi

supervise  learning  transfer  learning  deep  learning  domain  learning  these  situations  very

important because it is possible that you may not have lot number of samples in certain data set

but there is an oxalises layer in set which has huge number of data set.

And samples so you could change your classifier which such samples and try to perform we

cannot train directly on another data set and train a another data set and tested another one so

there are methods in which you try to transfer the information fro0m one domain to other there

are methods on other methods of transfer learning and simple supervise which actually you have

the human intervention between which tells you that some of the classifier decision made during

testing are correct or not.

And you try to readjust the vertices of the particular classifier carrying on there are methods on

ransom  forest  independent  component  analysis  well  I  will  put  one  minute  sentence  here

remember PCA LDA and then you have ICA people talk about these settings almost together

PCA works without class levels it gives you the scatter along the maximum direction okay LDA

supervise learning which tries to give you.



This  scatter  along  the  direction  which  you  have  maximum  seperabilty  between  classes  the

difference is PCA takes the entire data into account and gives you maximum scatter where and

LDA gives you maximum reparability we know that criteria SW-1x   that is criteria which tries to

maximum and maximize and it you need class labels  for that n hence LDA is supervised is

unsupervised ICA relax one constraint for a LDA it each class levels.

It is a supervise method of learning but it relax the constraint that the second Eigen vector is

normal to the first is normal to the first third is normal to the first and second and so on if you so

there are certain data sets in which after you obtain the first principle Eigen vector let us say in

which you are maximum separable it is not necessarily true always in all data sets that the second

seperabilty will be orthogonal to the first that may not be the case.

So in such cases you need to find out the mechanism where you get the second component of this

second  maximum  degree  of  separation  which  should  be  in  a  certain  direction  may  not  be

necessarily orthogonal to the first one but it basically means if you looking at some ith principle

component in LDA that may not be orthogonal to the rest previous i-1 principle Eigen vectors

that is what ICA tries to do to overcome the restriction on LDA people have worked on pulse

spike probabilistic network.

And there are methods of non linear and convex up to optimization related to both minify based

learning  related  to  modern  methods  of  ML which  people  are  trying  out  to  solve  complex

problems in the field of pattern recognition graph based kernel and embedding are also some of

the methods in structural pattern recognition and syntactic pattern recognition which we have not

covered in this course thank you very much.
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