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Hello and welcome everybody to the lecture series on computer graphics. Today we are 
going to discuss about projective transformations and 3D viewing pipeline. So essentially 
we discussed about 3D viewing and in the last few lectures we had basically discussed 
3D transformations and within transformations the last few part of the material on 3D 
transformation was basically on projective transformation. So as continuity we continue 
with the 3D viewing pipeline and projection transformations and that is the main subject 
of the lecture today which is essentially the fifth part of the lecture series.  
 
(Refer Slide Time: 2:02) 
 

 
 
So if we look into the flow chart of the implementation of 3D viewing you essentially 
give to the 3D viewing pipeline the set of 3D world co-ordinate output primitives on left 
hand side using the input here, 3D world co-ordinates output primitives goes through a 
set of normalizing transformations. This is the essential part of the discussion today 
which we will see. And the main focus of the discussion today will be on the meaning of 
normalizing transformations and why it is essential before we apply what is called as 
clipping that is the second stage, it is clipping against the canonical view volume. 
 
Now these are, I will say larger groups of task that is divided into various categories. First 
is applying a normalizing transformation and the second is clip against canonical view 
volume. So this is the new terminology which we will come across today. So we will 
define immediately what is a canonical view volume and how it helps in 3D viewing and 



where does it occur in the 3D viewing pipeline so we need to clip. Of course with this 
there is a separate section and discussion on clipping on both 2D and 3D clipping 
algorithms.  
 
As we discuss that it will be clear how to clip against 2D and closed shape or 3D volume. 
So for the time being we assume that there is a clipping algorithm which clips against a 
canonical view volume and after that we project on to the projection plane. Essentially 
we have discussed this earlier and the part of 3D transformations and I have also 
discussed about projective transformations in detail. And we also know the general 
formulation about projective transformations only. So the third task is known. And the 
last part is the simple transformation into view port, we will also define what a view port 
is.  
 
We have in fact seen this and will again see what a view port is in 2D device coordinates 
for display and how the 2D device coordinates are generated. So the input is 3D, world 
coordinate, output primitives in terms of lines, polygons and circle, text in 3D. And 
essentially those 3D coordinates are transformed in 2D device coordinates which must be 
given to the electron gun to fire the corresponding pixels on the screen.  
 
But in between that there are four sub categories and essentially in these four sub 
categories, number one is, as you see again on the screen, apply normalize 
transformation, second is clip against canonical view volume, third is projection on to the 
plane and the fourth off course is transform in to view port. Out of them we have 
discussed the third category that is projection on to plane. Of course we will see the 
formulation once again, the formula of the general projection transformation matrix but 
before that we need to do clipping. So we will understand what a canonical view volume 
is and before that the major part of the discussion in this particular lecture will be about 
applying normalizing transformations.  
 
So first we will see what is a canonical view volume. Well there are two types of 
canonical view volumes which are used in projection geometry in terms of 3D viewing. 
One of them is the parallel projection canonical view volume and other should be 
perspective projection canonical view volume. So the canonical view volume for parallel 
projection is defined by the set of six planes.  
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Essentially you can visualize these to be a rectangular parallel pipette, almost a square 
not exactly a rectangular parallel pipette where along the x and y dimensions or the x and 
y axis the difference between the two binding planes are at plus and minus 1 respectively. 
 
So along on x and y the size is 2 and along the z axis the size is 1 because its starts from z 
equal to 0 and ends at z equal to minus 1. So along this viewing axis it is minus z axis, 
the canonical view volume is bound by an FP or BP which basically means the front 
plane and the back plane which is also called as the front clipping plane and the back 
clipping plane respectively. FP and BP is what we use and FP is nothing but the x y plane 
z equal to 0 and back plane is nothing but z equal to minus 1. So both planes are parallel 
to the x y plane and that is the front plane and back plane defined by z equal to 0 and z 
equal to minus 1 as given on the right hand side of the equation.  
 
And the rest is x equal to minus 1, y equal to minus 1,  x equal to 1, y equal to 1. So 
basically if you think of a square or a rectangle parallel pipette you need six surfaces to 
bind a volume and the corresponding equations of the six planes are given here by these 
six simple equations as given on the top. And this is how the side view of the canonical 
view volume for parallel projection is given. Let us now look in to how this canonical 
volume takes a shape for a perspective projection. 
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Now you can see there is a relation between perspective geometric and perspective 
projection canonical view volume as well as the parallel projection and the parallel 
projection canonical view volume. Remember, in parallel projection we have the rays 
which are parallel and hitting the corresponding projection plane. And in the case of 
perspective the rays will focus or meet at a particular point so that is why you have a 
tapering effect of the canonical view volume for perspective projections.  
 
We still have six planes which define them as x equal to z, x equals minus z. So they are 
inclined plane symmetrical located with respect to the origin or the minus z axis and y 
equals z and y equals minus z and z. The front plane and back plane is defined by z 
equals minus 1 which is the back plane. As given in the figure here you see a minus 1 
which is this point basically. The z equal to minus 1 equation gives this plane and z equal 
to minus z mean gives the front plane. 
 
You can actually put the z mean equal to 0 if you like but typically it is a non 0 value 
which is less than unit. So, that is the front plane and the back plane which we are 
discussing about for perspective projection. To look into the comparison I will roll back 
this slide and you can have a look into the comparative figures, this is the canonical view 
volume for parallel projection and this is the canonical view volume for perspective 
projection.  
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You see a sort of rectangular parallelepiped structure because the rays are parallel here 
and the rays are tapered off and they meet at a focal point. So for the x y you have a sort 
of a pyramidal structure but for a canonical view volume for perspective projection we 
only see the side view. You have to visualize the six planes which bind this particular 
view volume, so that is the idea. And we will see or discuss later on about clipping in 
different sections and how to clip a certain line segment, basically line segments or even 
planes with respect to this canonical volume when we discuss about clipping but not in 
this lecture and we move on because now we actually have to capture this entire world in 
to a canonical view volume before they project it into the projection plane in the third 
step. So we will look back into this flow chart.  
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And typically this is the diagram for an arbitrary 3D view and I did cover this chapter 
under projective 3D transformations and a projective geometry and I hope you remember 
all the terminologies which I will repeat once again.  
 
The term VP means the view plane, VUP means by view up vector which is given by the 
yellow line or arrow representing the view up vector, CW the center of the window of the 
view port which is defined by the coordinates U min V min to U max and V max 
respectively. The grey color, the light blue color outside is the view plane, VRP is the 
view reference point which may not be the center of the window but VRP is the reference 
coordinate on the projection plane with respect to which you have the U and V axis, the 
2D coordinates axis on the view port or the projection plane defined and of course the n 
of the VPN which is nothing but the surface normal. The surface normal to the projection 
plane we have an VPN along the normal n to the surface and so I hope you remember and 
collect the terminologies based on which we also defined the projection geometry and the 
projective equations for both perspective that is on orthographic or parallel projection. 
We look in to the next diagram, this is also a diagram for perspective projection geometry 
and the VP and VPN are same that is a view plane and the view plane normal. 
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We have the center of the window and we have a view reference point and in addition we 
have a center of projection or perspective reference projection respectively or center of 
projection basically or PRP as it is called that is the projective reference point. PRP is 
projective reference point or COP as discussed about where the rays meet. And basically 
for the parallel projection the COP goes to infinity and we can have a PRP defined even 
for perspective geometry but COP basically goes to infinity because the rays have to be 
parallel to the projection plane. In this case, for the perspective case they meet at the 
center. So I hope you remember these two diagrams which we also covered in projective 
geometry earlier.  
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Typically in a general framework of computer graphics you need to specify an arbitrary 
3D view. Of course you must ensure that when we specify an arbitrary 3D view the 
camera is looking towards an object and the object is within the view zone of the camera 
and things like that. 
 
But let us take a typical example or a few examples of the viewing parameters, just a set 
of few example values to give you a rough idea about how to set these parameters. And 
then of course we will see how these parameters are used for normalizing transformations 
and also for projection geometry. The viewing parameters used are VRP which is view 
reference point, VPN view plane normal, view up vector or projective reference point or 
COP or PRP and the corresponding window coordinates of the view port.  
 
The view reference coordinates in bracket means VRP VPN VUP PRP, the first three are 
in world coordinates, WC VRC is view reference coordinates, projection types could be 
perspective or parallel and you can also have the front plane and the back plane 
coordinates defined. These are optional with respect to VRC and the values are given for 
the set one, you may not defined mentioned job to set one. And set two does not contain 
the values for the front clipping plane and back clipping plane with respect to the view 
reference coordinates systems.  
 
So if we look into set one these are typical example values which you can specify for the 
arbitrary 3D view and you can make a function called with this set of parameters and we 
will set up a specify arbitrary 3D view for the object for you. So that is just a typical 
example when you use the graphical software and for the corresponding fixed standards 
you have to use this sort of conventions and these are just the example values which you 
can use. Well we go into the steps for implementing normalizing transformations matrix 
in the case of parallel projection first and then we look in to the perspective projection 
and the set of steps are defined in the slide.  
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The first step is you need to transform the VRP or the view reference point to the origin. 
Translate the VRP to the origin so you need to have a translation matrix first and then 
you have a rotation matrix which helps you to rotate the view reference coordinates such 
that the n axis of the VPN of the view plane normal axis here aligns with z-axis of the 
world coordinate system and in turn also the u with the x and v with the y. So u aligns 
with x and v with y and the VPN aligns with z.  I hope you remember the VPN we just 
discussed about what it means of the figure to be will describe as to what is meant by 
translating or at least rotating this, because the second step of rotation is a most crucial 
step in the process of implementation and the rest are easy steps but I will complete the 
sequence of steps.  
 
The third step is basically sheared which is not necessary for pure orthographic projection 
general necessary for parallel. We know orthographic is the special case of parallel 
projection and in the case of non-orthographic parallel where the direction of projection 
or DOP is not parallel to the z-axis, we need to make it parallel to z-axis before we 
actually project it. So you may need a shear in case of parallel projection which are non-
orthographic images and that is the third step. But remember it is non-optional but will 
have a sheared matrix in the third step.  
 
In the fourth step you have translate and scale into parallel projection canonical view 
volume. We know the planes which define the canonical view volume and we need to 
provide a translation and scale to adjust your view volume to the canonical view volume. 
This is also necessary in the view pipeline before you actually use the projection matrix 
and in fact before you use the clipping itself and this is the form. So these are the 
sequence of steps and you see that if there are five different steps it results in a composite 
matrix with five different matrix multiplication in the particular order and since the first 
step is translate the VRP to origin that is the T with a minus VRP parameter, then you 
have the R which we are going to discuss in detail today. 
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And then SH matrix parallel means the shear in case of parallel projection and then T and 
S successibly for parallel projection respectively. This S and T correspond to the last step 
fourth and fifth respectively which is translate and scale into parallel projection canonical 
view volume. So this is the sequence of operations one is to do of the first stage itself of 
the 3D viewing pipeline. If you remember the flow diagram which we discussed about in 
the beginning of the lecture today, there were four stages; the first stage was normalizing 
transformation, second was clipping, third was projection and fourth was simple 2D in 
view port.  
 
So the first one is what we are discussing now and these are the five steps of the first 
stage itself, the normalizing transformation. So you need to normalize as that the entire 
world, what this stage does is, the entire world is brought in to the canonical view volume 
so that you can apply clipping easily and you can also apply the perspective projection 
transformation matrix. So, perspective projection transformation matrix, although we 
know the generalize form before we can apply two sub stages prior to that, one is 
clipping which we will of course discuss later on. So do not worry about it for the time 
being, I will keep repeating it, do not worry about clipping, we will do that with respect 
to the canonical view volume when we exclusively discuss clipping in 2D and 3D.  
 
We will mainly discuss the first stage which is the normalizing transformation. And that 
has five stages as given here and the composition matrix N par where N par is nothing 
but the overall normalizing transformation matrix for parallel projections. I repeat it is 
composed of sequence of five different operations of five transformations. First translate 
T then rotate R shear SH then a translation T and again as scaling S par. Out of these the 
most significant translations will be very easy as you can visualize. We will first discuss 
R and then of course spend a little bit time about the shear. So rotation is the one which is 
very crucial and we will see why. This is the step two of normalizing transformation,  
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I repeat that state again, is you have to rotate the view reference coordinate system, the 
view reference coordinate system which is defined with respect to view port and camera 
and things like that. So the camera will have its own u v and the n axis, you have to rotate 
that, of course translate the VRC to the origin and then rotate in such a manner such that 
it gets aligned with the world coordinates just as the VPN or the n axis or the view plane 
normal aligns with the z axis of the world system and the u and the v also aligns with the 
x and y axis respectively. So this is the most difficult task in normalized transformations.  
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And just to give an example what I mean by this, let us see this xyz or xyz is the world 
coordinate system. That means originally you have defined the world coordinate system 
with respect to this xyz as origin and however the camera is in such a position that it may 
not be at the origin of the system it could be at some arbitrary position looking down at 
some other direction and there is where you have the n and u and the v axis which 
defined the 3D coordinate system for the camera let us say because basically through the 
camera you are looking into the virtual world which gives the visualization. 
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The camera will have its own view plane normal of the n axis and it will have its own x 
and y which we call it as u and v and this diagram as we already know where is the view 
plane, what is the view up vector, what is the VPN, center of the window CW, view 
reference point and all that. So the first stage is to basically take this diagram or with 
respect to the camera or the view system and first give a translation that the VRP goes to 
the origin and then give a composite rotation such that the VPN has to align with z, u 
with x and v with y. I repeat again, first the VRP has to be taken to the origin, here it will 
go, I repeat VRP is here, it has to go to the origin at this point then the VPN of the n axis 
should align with the z axis here. 
 
I hope you can see the cursor, then the u axis should align with x and the v with y. So 
these three must simultaneously happen together with the composite rotation on three 
dimensional rotation matrix. Three dimensional rotation must takes place to have this 
alignment done. So this is the most crucial stage or step in normalizing transformations 
and this requires a sequence of operations.  
 
Now, how to get this R, how to get this R? You will probably think of the divided steps 
of 3D rotation and transformations which take place but we dig into the depth of a little 
bit of mathematics here to easily understand about 3D rotations, get some principles out 
of the matrix property of rotation and see how easily we can formulate this R. And then 
we go to the next slide. So we are now essentially under the first category or the first 
stage of normalizing transformations. Within the five steps of the first stage we are in the 
second step. The first stage of the four stages is normalizing transformations, in that first 
stage we have five steps and in that five steps first is translation and second is rotation. 
We are talking of step two and that is what is given in the slide.  
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So we are looking for expressions for step two which must be derived and that is what we 
are looking at and then we implement that using the concept of what we call as combined 
transformation or rotation. Let us take a rotation matrix or x, this rotation matrix you 
know what it does, it takes the point in the view space and rotates about the x axis. So the 
x axis coordinates of that point will not be disturbed, the x axis pointing towards you; you 
rotate it about the x axis. So the x axis coordinates of the point does not get disturbed but 
what are the two other coordinates we change? y and z, y and z are the two coordinates 
we change and that is why you see the parameters cos alpha sin alpha, of course we were 
talking about looking into the axis and counter clockwise rotation, positive alpha, the 
second and third axis cosine alpha and sin alpha terms causing the change in y and z 
coordinates but the x axis will not change. So let us try to visualize this rotation from a 
slightly different angle.  
 
I make a statement here and we will validate that with a figure and illustration and later 
on that if we take the rows of this matrix Rx as unit vector, that is what is written. If rows 
are unit vectors, you remember it is very easy to see here that due to the orthogonal 
property of this Rx matrix the rows and the columns are unit vectors. So take the rows as 
unit vectors and when these unit vectors are rotated by this rotation matrix Rx they will 
align with the y and z axis respectively. Well straight away it is difficult to visualize the 
statement but I will explain that soon with the help of a figure but just note down for now 
that the rows are unit vectors. If we take the rows, I will take these rows of the matrix, 
each row is a unit vector, we can verify that, take the first three terms of each row, you do 
not have take the fourth term because the fourth term or the 4/4 matrix is coming due to 
the homogenous coordinate system. So just take the top left 3/3 sub matrix and take the 
three elements of each row, the three dimensional vector we are talking about. So each of 
these rows are unit vectors and these unit vectors I say that when they rotate it by Rx the 
x coordinate does not change.  
 
So 1 0 0 the first row vector remains 1 0 0 itself but the next two row vectors which are 
again unit vectors they will get aligned with y and z axis respectively. So it is a very nice 
phenomenon which we will discover now with an example. But before that there is 
another complimentary or similar concept where I say, what about the column vectors? If 
I say that the rows are unit vectors and if they are rotated they will align with y and z 
respectively. Then the second point says that if I take the unit vectors along the principle 
axis of the coordinate system and those unit vectors are rotated by Rx they form the 
corresponding column vectors as given here in this matrix. 
 
So if take the column vectors 1 0 0 0 0 cos alpha sin alpha 0 minus sin alpha cos alpha 
you can form these vectors by taking unit vectors along the principle axis and then 
rotating by Rx. Take the principle axis vectors, unit vectors, rotate them and you get the 
column vectors. And the other case, if you take the row vectors and then rotate by Rx 
they will get aligned with the principle axis y and z. Very interesting phenomenon here 
and we will see with an example figure as to how this happens. Again I repeat, this is 
again the row matrix Rx as given the top and what are those row vectors, that I have 
given here and the row vectors of the first row I get 1 0 0, that is the first row vector 1 0 0 



as given here, the second row vector or take the first three terms upon left sub matrix 0 
cos alpha minus sin alpha is the second row. The third row is 0 sin alpha cos alpha.  
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These are the three row vectors in 3D. How will these row vectors look like? Let us take 
a three dimensional coordinate system as given in this figure on the left hand side of the 
slide with you and the x axis is not shown because it is coming out from the slide and 
pointing towards you. You can take a right hand coordinate system and assume x to be 
pointing towards you. So I have not drawn that because they are essentially rotating 
around the x axis, so it will rotate about the origin in 2D and x axis pointing towards you, 
to the right you have y and the vertical one is z. So look back in to the figure and you will 
find x axis pointing towards you, y to the right and z axis vertically upwards.  
 
So now look back in to the row vectors which I have just written. Look at to the row 
vectors and try to map it on to the system. You will find that the 1 0 0 vector is nothing 
but it is along the x axis pointing towards you. Anyway since it is rotating by Rx it does 
not matter, 1 0 0 nothing will happen. What about the second vector 0 cos alpha minus 
sin alpha, you look at this, I have labelled with the same color as the row vector in text 
and this is the corresponding yellow vector which is giving the second vector because if 
you look this the angle alpha then the X coordinate and if it is a unit vector then the y 
coordinate will be cos alpha and the z coordinate of the vector will be sin alpha in the 
negative direction hence we have minus sin alpha so that is the second vector. 
 
For the third vector also I have used the corresponding color; it is sin alpha along the y 
and z alpha along the z axis. So these are the two vectors which are the second and third 
row vectors of the transformation matrix Rx. Now what will happen if I take these two 
vectors and give it a counter clockwise positive rotation alpha. You can visualize what 
will happen if I give it a rotation by an amount of alpha, what will happen? These 
corresponding row vectors will automatically get aligned with the y and z axis. You have 



them bent, they will turn and they will get aligned with the y and z axis respectively. I 
discussed this as a point in the previous slide. I will show that point once again where you 
take the row vectors as given in the transformation matrix and those row vectors when 
given a corresponding rotation by the same matrix they will get aligned with y and z. 
Now what with the column vectors? I can view the same diagram and visualize the 
column vectors.  
 
(Refer Slide Time: 26:48) 
 

 
 
Now for the column vectors what you assume is let us take a column vector, you take unit 
vector along y and z respectively and give it a negative rotation that is now the clockwise 
looking into this figure negative rotation of Rx of minus alpha. In this case what will 
typically happen is you will get the corresponding column vectors as 1 0 0 0 cos alpha 
minus sin alpha. Remember Rx of minus alpha, so what will happen is in this matrix the 
sin alpha here will change sign to minus and in the third column the minus will become 
plus. So that is what is happening here, the reverse could also take place, you have to 
given a positive alpha and seen what could have been the result.  
 
But in this case I can show you that with the negative alpha and the same figure if you 
take unit vectors along y and z and give it a clockwise rotation you will get the column 
vectors exactly as given by the transformation matrix. So this is an interesting 
phenomenon which we will use to derive the general transformation matrix in which you 
have an arbitrary coordinate system and you need to give a composite direction to get it 
all aligned with another coordinate system respectively. I will roll back to those two 
points once again.  
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You see here these are the two points where I say, I repeat again, if rows are unit vectors 
and then they are rotated by a rotation matrix Rx, remember then they will get aligned 
with the y and z axis respectively and we have seen that. These rows of unit vectors 
obtain itself from the Rx. And the next point is when the unit vectors along the principle 
axis are rotated by a transformation matrix Rx they form the corresponding column 
vectors of Rx. So that is a very interesting phenomenon and we have seen that with the 
help of this example.  
 



You can copy this figure and the corresponding row vectors, column vectors and keep 
checking it yourself with both positive alpha and minus alpha. Rotation of course you can 
use Rx Ry or Rz you will also get the same effect. So keeping this concept in mind that 
the row vectors can be rotated and formed and they form the vectors as given in the 
rotation matrix and the column vectors you take, in fact the row vectors get aligned with 
the y and z and in the case of columns you take unit vectors along y and z and what 
happens is they form the vectors as given by the Rx. So, if that is true and if it is possible 
to use this concept and this idea because of the property of orthogonality of the matrix, 
because unless the matrix would have been orthogonal you would not have had the rows 
and columns giving you unit vectors, that is number one.  
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And so if that is the case I make a step jump and come to a general scenario of combined 
rotations where if I use this property based on the orthogonality of the R matrix where I 
say that if this is a scenario of three different vectors on a system xyz, I have the yellow 
vector P1P3, the white is vector given by the white arrow P1P2 and the dashed vector in 
blue color P1 Pn. So these are the three vectors and in these three vectors I must tell you 
that the P1 and Pn is nothing but a vector which is normal to the surface obtained by P1 
P2 P3. So actually what it means you can cross product of the two vectors P1P2 and P1 P3 
that will give the normal vector Pn that is the relation.  
 
So basically P1Pn is normal to both P1P2 as well as P1P3 whereas P1P3 and P1P2 may not 
be orthogonal to each other or perpendicular to each other. So Pn can be visualized again 
as normal to a surface formed by P1P3 and P1P2 vectors. But what I essentially want to 
do is I want to get this a set of vectors aligned with, at least two of  them I can get them 
aligned with two of the other axis in xyz axis because I have perpendicularity with 
respect to Pn and P2. P1Pn is perpendicular to P1P2. So before transformation this was the 
scenario, I would like to give this set of three vectors a combined transformation where 



these three get aligned with the homogeneous. If this the xyz and I have this P1P2 P3Pn 
vectors and I will give it a combined transformation to get itself aligned with xyz.  
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And now we go back into the slide and I want to give it a combined transformation and 
after the transformation I want the following to takes place. The P1P2 vector before 
transformation was given in the previous figure here in the same slide and it gets aligned 
with the z axis and corresponding normal to that is the P1Pn the blue colored dashed one 
gets aligned with the x axis and of course P1P3 also takes its own place somewhere 
because it has to be perpendicular also to the P1Pn. So basically these P1 P2 P3 vectors, 
these two vectors will lie in the YZ plane and that is bound to happen with this set of 
transformation.  
 
So, if you remember the previous two concepts in which we talked about the 
orthogonally matrix in terms of rows and columns, which one was the property when 
given a rotation arbitrary vectors or some vectors gets aligned with the coordinate axis 
xyz? We have to deal with rows because if we take the rows as unit vectors of the 
transformation matrix and give it a transformation they in fact get aligned with the 
corresponding principle axis. So that relation will keep in mind and the corresponding 
transformation rows or columns of the transformation matrix in fact can now be defined 
or obtained directly from these vectors. If we just expand this concept from 2D which 
was a rotation on x axis to a general scenario, just a step more, of course we can derive an 
analytical expression and check this also but if you just draw an analogy to a general 
three dimensional scenario what will happen is now that you can derive this 
transformation matrix from the vectors directly. That is the advantage, remember the 
previous examples we were taking these rows and columns with the transformation 
matrix Rx. Keep that in mind and we will derive now.  
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Let the effective rotation matrix be a combination of three rows as given by these where I 
will the first row corresponds to something in x such as r1x r2x r3x respectively, second 
with respect to similarly with y and similarly the third row with respect to z. And this is 
the effective rotation matrix which will cause the transformation to take place and if that 
is so this rotation matrix, what were you supposed to do before transformation? This P1 
P3 P1 P2 P1 Pn the three vectors will be transformed in such a manner that the P1 P2, the 
purple color vector will get aligned with z axis the whitish dashed vector P1 Pn will align 
with the x axis and of course the P3 vector will also align somewhere in the YZ plane.  
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To implement this concept we look back into the equations and here the corresponding 
form of the coefficients of these combined or effective rotation matrix is given. And we 
start with the bottom row, the last row of that matrix where I defined Rz to be vector of 
the last three coefficients of the last row elements of the matrix given by what it is 
nothing but the unit vector along P1P2. So if I put the elements to the last row equal to the 
unit vector along P1P2 that will help me to get this vector align with the z axis after 
transformations. Similar to that what I have to do next? I have to take this P1Pn vector 
and align with the x axis. So my first row which consists of elements r1x r2x and r3x 
respectively which is given by the vector Rx is nothing but the vector P1Pn.  
 
And what is P1Pn vector? It is nothing but a cross product of P1P2 and P1P3. Unit vector 
along P1Pn can be obtained by the cross product of P1P2 and P1P3. So that is the unit 
vector which is given by P1P2 cross P1P3 cross product divided by the norm 
correspondingly will give the unit vector along P1Pn and that gives the elements r1x r2x 
r3x respectively. So the top row and the last row elements are coefficients of the matrix 
are already obtained, you need the middle row which is nothing but the r1y r2y r3y 
respectively.  
 
Easily you can visualize that they have to be nothing but a cross product of the two 
vectors P1P2 and P1Pn, and nothing but basically Rz into Rx that will give you the vector 
which will align automatically with the y axis, because after you have aligned P1P2 with 
z, P1Pn with x automatically the cross product of these two will get aligned with the Y 
axis respectively. So the cross product of Rz and Rx will be elements of the Y axis. So 
this is the philosophy or concept by which you come up with an effective rotation matrix 
by which any arbitrary three dimensional coordinate systems can get aligned with another 
coordinate system respectively.  
 
Of course we are talking of Cartesian coordinate system XYZ and nuv let us say, and you 
want to put this here or you want to put that here sort of the thing, you can do that simply 
if you know the corresponding vectors, unit vectors of the other axis with respect to the 
one which you are mapping on to or aligning it with. And if you know the source and the 
target of these vectors with respect to this coordinate system, then you just form the 
transformation matrix with the help of these vectors, you put the coefficients as these unit 
vectors apply that and the system gets aligned. So that is the basic philosophy of the 
rotation matrix which is essential for implementing step two of the transformation of 
normalized transformation. So understand the theory now and I repeat this figure once 
again.  
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This is essentially showing figure in which the rotation matrix of step two has to be 
formulated in a manner in which we illustrated with respect to this figure where I made 
P1P2 align with z axis and P1Pn align with the x axis respectively. And if I can do that 
similarly I can do it for my normalizing transformation where I need to take the VRC at 
the view reference coordinates system and align it with the world coordinate system. And 
I will have the similar form of the rotation matrix and I remember I repeat the step two 
and this is what we have been discussing about how to implement step two in 
normalizing transformation and it says that you rotate the VRC such the view plane 
normal or the n axis aligns with the Z axis and also you make u align with x and v align 
with y axis respectively. That was your world coordinate system xyz and you have to 
align this, this figure comes again.  
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I repeat this because this is essentially what we were planning to do and we have to do 
and we have understood the basis theory of how to do that. How do you do that? Now 
you need to just align VPN with Z axis, u with the X axis, v with Y axis, this was our 
original problem and we know to solve it. We know to solve it because if you know the 
vectors VPN u and v respect to the world coordinate system xyz you can form a rotation 
matrix with the help of these vectors and that is the rotation matrix which will help you to 
get the system aligned with the world coordinate system. So let us look at this form.  
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That is simply like the one we did, take the z axis, the last row coefficients Rz which is 
nothing but the view plane normal. So take the unit vector along the view plane normal 
that will give the last row of the transformation matrix for rotation. The x will also be 
obtained by cross product of the view up vector and Rz. Let us go back to the figure to 
understand the significance of Rx here, it is a cross product of view up vector and the 
view plane normal. If you take the cross product of the view up vector, view up vector is 
nothing but point which is the vector lying in the nv axis and the cross product of the 
view up vector with VPN will actually give you nothing but the u axis.  
 
So this specification of view up vector and VPN itself, these two vectors are sufficient to 
tell you where your u axis is and a combination of u and view up vector will tell you or 
the VPN and u will tell you where is your v but to get u, given VUP and given VPN, I 
repeat the given VUP or view up vector or given view plane normal or the VPN the cross 
product of these two will give you the u axis and that is the concept of taking the cross 
product of view plane normal which is nothing but Rz and the VUP gives elements of x 
and of course the elements of y which is the second row can be obtained easily by the 
cross product of Rz and Rx. So these are the equations which will help you to get the 
equations for the combined transformation of the rotation matrix. That is step two. 
 
The step two coefficients can be obtained by Rx Ry Rz respectively, individual rows and 
they are computed. Nothing is required except you require the view plane normal and 
view up vector. Once VPN and VUP are given you can actually obtain the Rx Ry Rz 
elements required for the rotational matrix, that is the step two. 
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In step two, you remember, there were five different transformation matrix required for 
the overall combined normalize transformation matrix for projection. I have put in 
brackets WCSVV to be projected to PPCVV. I will explain what these terminologies 
mean. Well WCSVV expand to world coordinate system view volume has to be 



transforms to a parallel projection canonical view volume PPCVV. World coordinate 
system view volume to a parallel projection canonical view volume that is what we have 
been discussing as the overall combined transformation matrix and it consists of five 
different transformation matrices.  
 
First you remember the steps; translation, rotation, shear and translation, scale again. And 
after the translation with respect to minus VRP so far in most part of the talk in the last an 
hour so I have to discussed how to get this R and the equations to obtain the elements of 
R are given in the same slide in the top. The third, the last row of R is given by the VPN 
VUP multiplied by VPN cross product gives you the first row or the elements of x and 
the Rx and Ry can be obtained by the cross product. So once you get R the first two 
stages are over, you need to only find out how to get the shear transformation matrix and 
what should be translation and scale. So in the remaining time we will discuss these three 
transformation matrix and complete the first stage of the viewing pipeline of the 
normalizing transform.  
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This was the equation, the combined transformation matrix for parallel projection which 
transforms a world coordinate system view volume to a parallel projection canonical 
view volume WCSVV to a PPCVV is given by these five transformation matrices and we 
know that how to get R and T. What is a shear matrix? The shear is necessary if you 
remember carefully we were discussing these steps, the shear matrix is necessary for 
parallel projection which is non-orthographic. Parallel projection could be of two types; 
orthographic and non-orthographic as well as symmetric and asymmetric and all that. 
What is the difference between orthographic and non-orthographic among the class of 
parallel projections. Well in case of parallel projection there is no doubt that all the rays 
will be parallel and they will be going towards the direction of projection, somewhere 
towards infinity. COP is inter projection and it goes to infinity, that is why the rays are all 
parallel. But there is a direction of projection, the direction of projection may not be 



normal to the view plane. If it is normal and gives orthographic, if it is not normal to the 
view plane if this is the view plane then they are all perpendicular to the view plane, you 
get perfect orthographic parallel projection. But you can have non-orthographic parallel 
projection where the parallel rays are now not normal to the surface, they just come and 
hit this in an inclined manner. So that is the case where you need to provide a shear to the 
view volume now, otherwise if it is pure orthographic rays are anyway normal to the 
projection plane, then you do not need to provide this third step or the middle step of 
shear and to explain this shear step I have two figures where before this is the side view 
of the shearing of the view volume. 
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What actually may happening is as you can see the left hand side at the bottom of the 
frame you have the view plane normal and the direction of projection is somewhere 
different, it is not parallel to the view plane normal. This can happen in a parallel 
projection which is non-orthographic in nature.  
 
In case of an orthographic automatically direction of projection and view plane normal 
will actually be parallel, you do not have to provide the shear. But here the direction of 
projection is not aligned with the view plane normal and we need to provide a shear to 
this view volume to make the direction of projection align with the view plane normal. 
That is given in the side, with the side view of the shearing of the view volume you can 
provide it shear, the right hand side figure; the rhombus type of figure basically becomes 
a perfect rectangle or a square and that helps to make a direction of projection and the 
view plane normal and now they are aligned. That can be provided by two types of shear 
along with the x and y axis you need to give the shear. And the  matrix is given here SH 
par and just two elements here SHx par and SHy par, I eave it as an exercise for the you, 
the first exercise in today’s lecture is to obtain this Shx par and Shy par elements of the 
shear, you have discussed about shear matrix in the 3D transformation.  



You should be able to derive that but the answer is given to you here where the elements 
are nothing but the ratio of x to z component of direction of projection vector.DOP vector 
is direction of projection vector so the x component of that divided by z gives you the 
SHx par and the ratio of y to z gives you the SHy par. The SHy par is given by DOPy by 
DOPz respectively.  
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We are discussing this stage of overall combined transformation and now there are two 
stages left; one is scale and the other is translation. I leave it as an exercise for you, these 
last two stages of translation and scale are required because the view volume has been 
transformed after rotation, translation, shear but it has to be shrunk to the canonical view 
volume defined by the six planes in parallel projection. And it would have scaling before 
itself, you may need to translate it such that the front plane gets aligned with the 
corresponding XY plane and the corresponding Umax Umin Vmax Vmin have to be aligned.  
  
So you need a little bit of translation in 3D to align it perfectly and then give it an overall 
scale factor. You see that the T tree matrix is a vector whereas the x is a functional form. 
These are the three diagonal elements of the T matrix which are given in the last equation 
and you provide that scale, you provide that scale to actually fit it and form the canonical 
view volume in parallel. In the remaining time we will quickly go through the perspective 
transformation matrix for normalizing transformation and the steps are almost similar to 
the parallel projection, only now the canonical view volume have a different shape is like 
a pyramid unless in the case of a rectangular parallelepiped in the case of a parallel 
projection. 
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These are the equations, six planes we discussed about in case of perspective projection. 
So it forming a pyramid we are having a side view in XZ plane or YZ plane only we are 
looking if we look into either XZ or YZ you will have this figure, it is basically like a 
pyramidal structure. I will quickly go through the steps.  
 
It is almost the same, translate the VRP to the origin, rotate the VRC, the second step is 
also the same we do not need a shear now, prior to that we need a translation because 
there is a center of projection or a perspective reference point or a PRP or COP which 
comes. You need to provide a translation first, then you need to provide a shear such that 
the center line of the view volume becomes the z axis like the direction of projection 
which you had in the case of parallel projection and then of course you do a scale. So a 
sequence of steps are almost similar especially the first two and then the last three are 
little bit jumbled up in the sense that translation first, then the shear and the then the 
scale. This is the scenario of the cross section of the view volume after first three 
transformations.  
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What are the first three transformations? Translate with respect to minus VRP, rotate 
which we have discussed first, the rotation of one system to the other and then of course 
you translate it to the minus with respect to minus COP or PRP, then you need to give it a 
shear because what may happen, after the first three stages of translation, rotation, 
translation is the view volume, before giving it a scaling the view volume might appear to 
be something like this, it may not be perfectly aligned with z axis. You need to do this 
otherwise the canonical view volume will not come in shape and it cannot apply the 
projectory transformation later on. So the view volume center align VVCL as given here 
passes the center of the window from the origin and these has to be aligned with respect 
to the minus z axis and that is what is required and that will be divided to the SHpar 
matrix which should give you that shear. 
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So this is the overall picture and just as a comparative study of the overall combined 
transformation matrices for parallel and perspective. As you can see here the nature is 
almost same. Specifically the first two transformations T of minus VRP and R are same. 
Then you have a translation and shear in the case of perspective and in the case of a 
parallel on the top you first have the shear and then translation. So that is the reverse and 
the end but anyway you have to scale it to the corresponding canonical view volume. So 
that is the comparison between the two projection geometries of transformation matrices. 
And now if you go and look back, we will stop with this today and we come back to the 
original viewing pipeline.  
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The implementation of 3D viewing pipeline, we started to talk about today and you 
remember, to repeat again we started with 3D world coordinate output primitives, apply a 
normalizing transformation, then clip then project on projection plane and ultimately the  
2D transformation to get the 2D device coordinates. So far what we have discussed in the 
entire lecture today is the first stage only. The applying normalizing transformation and 
that to two parts of it; one is the parallel geometry, parallel projection and another is the 
perspective geometry. And among those there are five steps of transformations in the first 
stage itself to applying the normalizing transformation and among those five steps the 
second step rotation was probably the most crucial one. And of course we have to apply 
the shear and the scale as well. 
 
So, applying the normalize transformation and consists of five steps, both in the case of 
perspective and parallel projection geometries. Then you of course need to provide a clip 
in the canonical view volume and then we project into projection plane. Now the third 
stage is the projection plane, this we have studied earlier in the case of 3D transformation 
itself, I will just flash this slide so you can recollect the general transformation matrix for 
projection and once that is done you just need a 2D scaling in terms of the transform into 
view port in 2D coordinate for display. And the next slide is the third stage, it is because 
the second stage of clipping we will discuss when we talk of clipping entirely in 2D and 
3D.   
 
So now we know the first stage, the second stage of clipping will come in due course of 
time of clipping, third stage in fact we have already discussed under 3D dimensional 
transformations and this was the generalized formula. If you remember the generalized 
formula for perspective projection matrix was given as this. This we derived in the 
pervious lecture under three dimensional transformations.  
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Under three dimensional transformations we discussed a lot about projection geometry, 
parallel axonometric, trignometric one point, two points, three point perspective 
geometric and also transformation matrix in the case of perspective geometry. And also 
this generalized projection matrix is applicable for both perspective and parallel and if 
you recollect back into the notes which you have taken from the slide, now you can put 
special cases of the value of (dx dy dz) direction of projection and q which will take the 
COP either infinity or in a finite distance will give you projections of perspective or 
perspective or parallel or orthographic. So with this we stop today and we continue with 
the 3D viewing pipeline in the next lecture. This is the perspective projection matrix 
which we use as the third stage of the viewing pipeline. I go back and we stop this same 
slide which we were taking and we started with this slide where we have discussed 
extensively about applying normalized transformation and we have also seen the 
expression of the third stage which is projected onto the projection plane.  
 
We will probably not discuss canonical view volume clipping now. A little bit of 
transform into view port we will discuss. But in the next lecture we will start on this and 
we will see the viewing pipeline broken up into several stages where we start from object 
model coordinate system pass through world coordinate system go into the eye space or 
image coordinates and then to device with it. So it is entirely a sequence of 
transformations which takes your object somewhere in space, the camera is somewhere 
here, the model is somewhere here and the sequence of transformations which will slowly 
take all these into the device coordinates in the screen on the TV or on the projection 
system which you see. So we stop here with the first lecture on 3D viewing and we will 
continue this with the 3D viewing pipeline with different matrices revisited again at the 
different stages and how to get the 2D devise coordinates and we will put it. Thank you. 
 
 
 
 
 


