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Hello and welcome back to the lectures in computer graphics. We have been discussing 
in the last two classes about clipping lines, algorithms on the method of clipping, straight 
lines in two dimensions. And we have gone through two formulations the Cyrus Beck 
and Cohen-Sutherlands algorithms for clipping. Both use the parametric form of the 
expression of a line for clipping with respect to a rectangle. The rectangle is defined by 
two vertical edges with Xmin Xmax and two horizontal edges Ymin Ymax coordinates. And 
given a particular line in parametric form two end points P0 and P1 we now know with the 
help of  these two algorithms how to clip. One uses the region outcodes which we have 
covered in the last class using Cohen-Sutherland and the other method by Cyrus Beck 
formulation talks about using the functional form of a dot product between the normal to 
the edge which is being used to clip the line and the vector which dictates the line. 
 
So, we a have functional form on one side and the region codes on the other side. But if 
you look back into the last slide which we talked about the table, if you look back into the 
slide we discussed about the formulas of clipping with respect to the edge. In case given 
the line with point P1 to P0 these are the formulas to obtain the intersections X and Y 
intersections we showed them last class and I hope you could work out them very easily 
as to how to obtain the intersection X and Y coordinates with respect to the four edges of 
the rectangle with being used to clip a particular line P1 P0 that means X0 Y0 X1 Y1 are 
given to you and the edges have corresponding Xmin Xmax and Ymin Ymax as well.  
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If you compare this with the Cyrus Beck formulation, in the first class we also showed a 
table which talked about the Cyrus Beck formulation, you see here, I hope you remember 
this parametric line clipping calculations which uses the concept of functional form of N. 
P0 minus PE divided by the denominator N. D. If you look at the extreme right column the 
expressions given here, the numerator and the denominator terms almost exactly match 
with the corresponding one given here by the Cyrus Beck. Why this is so? This is so 
because both use the parametric representation of a line to obtain intersections. In both 
cases the simpler fact being that you are using two horizontal lines and two vertical edges 
and the expression become simpler. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 04:05 min) 
 

 
 
But you should be able to derive as I said before, earlier in one of the classes that given 
two lines in parametric form you should be able to obtain intersection point using 
parametric form of a line. So if you look back into this particular case for polygon 
clipping. Let us look at the expression for top edge, if you look in to the right hand side 
numerator divided by denominator term here the ratio and look at the top edge of the 
bottom of the screen now for the Cyrus Beck formulation you see they are same here Y0 
minus Ymax the bottom of the screen, the right column Y0 minus Ymax by Y0 minus Y1 is 
the same as those given here. 
 
Similarly, for bottom, right and left edges also you will find that the expressions exactly 
match. So you are basically using the same expression in the Cohen-Sutherland as well as 
in the Cyrus Beck formulation for clipping the line. The methodology or the algorithm is 
little different, the 1 uses the region outcodes we know, four bits MSB LSB, one bit for 
each particular type of region towards the left top or bottom three or top bottom right 
whereas in the case of Cyrus Beck we use the functional form of dot product of two 
vectors.  
 
Look at the angles for the sign and then either eliminate the edge or clip it. So these were 
the two differences of the two different algorithms. The formulas are same in terms of 
clipping, the algorithms is little different, one uses the region outcodes, one does not and 
the other uses the functional form and I hope it is clear. We will move on to the third 
formulation for line clipping. You see on the slide, the name is given by the proposals it 
is called the Liang-Barsky Line Clipping.  
 
 



Now this line clipping algorithm is probably the simplest out of the three which we will 
study in fact. We have studied two already and the third one today and we know for line 
clipping we will look and will see in fact the formulations are much much simpler.  
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Again as you look back into the slide we talk of considering parametric equation of a line 
segment. This is similar to the parametric expression taken earlier in the previous two 
algorithms except that in the previous two we use the expression P0 in the vector form 
equal to P1 equal to P0 plus sometimes some t. In this case instead of the parameter t you 
can see the reuse of the parameter u which lies between the range 0 to 1 here and instead 
of a vector equation we split it up into two linear equations of the form of X coordinates 
X1 plus u delta X. Delta X is the difference in X coordinates of the starting and finishing 
point of the line, delta Y the difference in the Y coordinates of the starting and finishing 
point of the line respectively.  
 
So delta X and delta Y are obtained from the two end points of the line and you substitute 
it back and for different values of u basically when u is equal to 0. In fact you are at Y1 
and when u is equal to 1 you can substitute and you can see that you at are at X2 Y2. So 
point is that instead of P0 to P1 we say it starts at X1 Y1 and terminates at point X2 Y2 and 
by varying u between 0 and 1 you are moving from the coordinates X1 Y1 or one end of 
the point on the line to the other end of the point so that is the parametric expression. 
 
If you look ahead the point is considered to be within a rectangle of course given the Xmin 
Ymin Xmax Ymax for the edges of the rectangle are given to you then we will say that if this 
inequality will hold good in fact there are four of them, you put together in two equations 
then if it is satisfied for any particular point X1 Y1 X1 plus delta u X of the middle Y1 plus 



u times delta Y at the middle. And so if this inequality holds good for any point X1 Y1 
lying less than XWmax YWmax and also greater than XWmin YWmin where I must admit 
here that XW and YW are the X and Y coordinates of the window or the rectangle used 
to clip the line instead of Xmax Ymax Xmin and Ymin which we have been using earlier.  
 
Similarly, we are using different notations here XWmin XWmax YWmin YWmax. So we are 
talking of two horizontal edges top and bottom, left and right vertical edges as like the 
previous case but the variables which are used are different. So the point here is 
considered to be within the rectangle if and only if this inequality holds good and each of 
these four different inequalities can be expressed as four different equations u. pq is equal 
to qk where k runs from 1, 2, 3, 4 for four different equations. These four equations are 
nothing but these four equations at the bottom.  
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It says that I am expressing four inequalities together in two equations here and these are 
the four equalities in short form where the parameters pk and qk are defined as these. You 
can easily work out this if you have written the previous four inequalities in the last slide 
given in two expressions then you can easily write it in to four different equations 
separately with the parametric form pk and qk where p1 and q1 to p4 to q4 are given in the 
particular form. So that is very easy for you to visualize. I repeat, the expression once 
again I am talking of these two, at the bottom you see these two expressions, four 
inequalities given in two expressions and they are expressed in this particular form.  
So the pis and qis can easily be calculated.  
 
Why? pis and qis depend on the horizontal and vertical edges of the clipping window or 
rectangle which is used to clip a line and the line has correspondingly coordinates X1 Y1 



to X2 Y2 so delta X and delta Y can be computed from the end points of the line and the 
XWmax XWmin similarly YWmax YWmin can be computed from the rectangle of the 
window which is use to clip the line. So if you look back, the parameters are known to 
you. So the pis and qis are known to you and you can form these two inequalities in terms 
of the parameter. 
 
I hope this point is clear.  
So based on these four inequalities we can find the following conditions of line clipping 
which says that if you read the slide here if pq is equals 0 that means if the parameter pk 
you know the parameters pk and qk now. So pk is equal to 0 the line is parallel to the 
corresponding clipping boundary that much you should be able to see. If you have copied 
the expression pk in the previous slide you see the expression of pk they are nothing but 
the delta X and delta Y. So pk is equal to 0 basically means the corresponding the delta X 
and delta Y is equal to 0.  
 
I hope that this point is very clear and delta X basically means that the line is 
correspondingly parallel to one of the vertical edges in fact to be very precise. And for k 
equal to 1 we are talking of the left vertical edge k equal to 2, we are talking with respect 
to the right vertical edge k equal to 3, we are talking of the bottom horizontal edge k 
equal to 4, we are talking of the top vertical edge respectively. 
 
So for correspondingly k equal to 0 if you look back into this expression in the left hand 
side the pk terms they are nothing but the delta X and delta Y respectively. That means 
you are talking of the line being parallel to either left, right, bottom or top edges 
depending upon the value of k that is what the expression is. Next we see, if for any k for 
which the line is parallel to anyone of the respective edges that means pk is equal to 0. If 
you find that the other constant qk for any k is less than 0 then the line is completely 
outside the boundary. 
 
What is qk? Let us look back.  
qk is this particular X1 minus this. So looking at the positive or negative value of qk as 
you look on the right hand side obviously you can visualize in very straightforward 
manner that if qk is negative the line is completely outside the boundary and if qk is 
positive or equal to 0 the line is on the boundary or is inside the parallel clipping 
boundary.  
 
I leave this as an exercise for you to check it out by taking examples that when 
correspondingly pk for any k is equal to 0 and depending upon the sign of the qk I will 
just look at the sign of the qk variable and find out whether the line is inside the clipping 
boundary or outside, completely outside or inside the parallel clipping boundary. This can 
be easily seen from the expression itself. If you look into the expression and compare 
yourself  the terms X1 Y1 and so on with XWmax and so on because for any k values 
between 1 to 4 signifies one particular edge of the clipping boundary.  



So we are comparing with respect to that particular edge which is signified by the value 
of k.  
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And as given in the slide I repeat again, k equal to 1 we talk of the left vertical edge, k 
equal to 2, right vertical edge k equal to 3, the bottom horizontal edge and k equal to 4 
the top horizontal edge respectively. So that is always the case for different four values of 
k. So now we know that when pk is equal to 0 this is what we do, we look into the sign of 
qk and decide whether it is completely inside or outside the boundary. What happens if 
the value of pk is negative that is less than 0? In this case the line proceeds from the 
outside to the inside of the particular clipping boundary and we have to visualize infinite 
extensions in both directions and say that the line is proceeding form the outside of the 
clipping boundary to the inside. 
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If it is on the other hand, if pk is positive the line proceeds from the inside to the outside 
of the particular clipping boundary and visualize infinite extensions from both. 
Remember, the expression of pk involves the delta X. So we are talking of X2 minus X1 
depending upon, you know which end point? Which point you are traveling? Left to right 
or right to left? You could travel from the outside to the clipping boundary to the inside 
or from inside to the outside. It depends upon which endpoint ordering you are 
considering when you are moving form one end point to the other of line. 
 
But we know first of all if pk is of course 0 then we are talking about the horizontal or 
vertical lines only and then you will look for pk qk to find out whether it is inside or 
outside. But if pk is not equal to 0 we again look into the sign of pk and tell whether the 
line is traveling from outside to the inside of the clipping rectangle. So that is what inside 
to outside or vice versa based on the sign. So remember these two terms negative it 
proceeds from outside to inside. If it is positive then we are talking from inside of the 
clipping boundary to the outside. In both cases the intersection parameter is calculated as 
following. That is a very simple expression; this is the advantage of the Liang-Barsky 
formulation.  
 
You see the expression is the simplest form qk by pk depending upon the value of k that 
means what? We did this in the Cohen-Sutherlands and the Cyrus Beck formulation also 
that we had four values of t and based on that we have to clip lines. So here also we are 
doing the same, four values of the parameter u instead of t what we have used in the 
expression and you get four values of u for corresponding to four different values of k 1, 
2, 3 and 4. And these are calculated by the expression as given here which is the ratio of 
qk by pk. What does qk and pk depend on?  



 
For any particular value of k we have seen that the corresponding value of pk is just delta 
X and whereas the other value depends on the Xmax Ymax and so on. So based on the 
coordinates of the clipping boundary and the coordinates of the two end points of the line 
you can compute qk and pk for different values of k and then take the ratio that gives you 
four different values of u. This is the computation required for Liang-Barsky algorithm 
and of course it is required only in the case when you find that the sign of the pk is not 
equal to 0 when it is negative or positive. If it is 0 we know what to do. So the algorithm, 
once we know the concept we look at the algorithm for the Liang-Barsky which is the 
simplest form out of the three. Initialize line intersection parameters to u1 and u2 for both 
0 and 1.  
 
We use two intersection parameters because we know that either a line intersects a clip 
boundary at two points. That is why you have t1 t2 or u1 u2 or it does not intersect at all. 
That means u1 u2 are not lying in the line 0 to 1. Or if they are two parallel lines of course 
you do not have a finite u in this case previous case t where the line intersects. So this u1 
and u2 are the parameters which the line intersects with the edges of the rectangle and 
then for each different values of k which we use an index I in this case obtain the pis and 
qis, the expression was given to you few slides back. So based on the end point 
coordinates of the line, based on the bounding rectangle Xmin Xmax Ymin Ymax you obtain 
pi and qi. 
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Then using the values of pi and qi find if the line can be rejected or the intersection 
parameters must be adjusted. This, we looked into the expression earlier to find out based 
on the qi value where you need to check whether the line is completely inside the 
rectangle or completely outside it or it is traveling from inside to outside. So two 
conditions we have seen and that is what we use to find out the line. So if pi is equal to 0 
you update u1 which is set to 0 as the maximum of the set 0, ratio of qk by pk where k is 
equal to 1 to 4. So obtain the ratio qk by pk for all the values of k because the pis and qis 
are known. So now I have switched the index to k but it is the same and so obtain these 
four ratios and check if any one of them is more than 0 that means it is positive. So obtain 
definitely between 0 and 1 and obtain the maximum value. That is what you do for u1. On 
the other hand, for u2 if pi is positive then you update u2 as minimum of 1 and the ratio 
again qk by pk where k is running from 1 to 4.  
 
So that is what you do, minimum of this, that means expecting here qk by pk to be less 
than 1 then only you pick up one of these ks and of course if any one of them less than 1 
for updating u2 otherwise you leave u2 to be 1. On the other hand, for the case of u1 since 
you have initialized to 0 here, you check if one of these ratios are more than 0 or in fact 
what you mean by simply taking the maximum of five different values.  
 
So after update you check whether you have got a case where u1 is more than u2. If u1 is 
more than u2 then you reject the line. This concept is similar to what you used for the 
Cyrus Beck formulation also with the PE and PL. If you remember entering the half-
plane leaving the half-plane for the Cyrus Beck formulation if you found that typically 
you expect the PE to be less than PL but if the reverse happens in a case when PE is more 
than PL with the line, it is the similar case here because we expect u2 to be more than u1 
but if after all the updates if you find u1is more than u2 then you should reject the line. 
So that is the end of the algorithm. Liang-Barsky is very simple.  
 
Now what I have purposefully done is I have not taken any example to illustrate the 
values of pi qi and also u1 u2. But if you remember in both the previous formulations, 
previous two algorithms both in the case of Cyrus Beck and Cohen-Sutherland I have 
taken examples of three or more lines to illustrate those two algorithms.  
 
I am leaving this as an exercise now for you otherwise you will not be able to understand. 
Please take a pencil and a paper and take those examples given in the earlier two classes. 
That is for which of the two algorithms? Cohen-Sutherland for region codes and the 
Cyrus Beck formulation for the dot product of two vectors. So, for those two algorithms I 
have taken some examples of lines from inside the rectangle, some outside the rectangle 
and some overlapping that means it is coming from outside to inside or going from inside 
to outside or in a traversing through part of the line be inside the rectangle. So all these 
different combinations in fact for the Cohen-Sutherland I remember I have taken six 
different lines.  



So for those six different lines I would request you to please try Liang-Barsky 
formulation. That means you computer the qk’s and pk’s or pis and qis for four different 
values of I corresponding to four different edges. Check and then apply the algorithm 
based on the sign of qk‘s and pk’s or the qis and pis depending upon whether the line is 
parallel or not parallel and apply this update formulation and check how the clipping 
occurs.  
 
Please does that to understand for yourself because I believe if you understand the 
previous two algorithms, understand the method of algorithms partly at least now without 
an example you should be able to solve an example yourself and that will definitely give 
lots of confidence. So please take the previous two examples in the previous two 
problems which I have solved and please work out. And take this as a home assignment 
to work out the Liang-Barskys formulation with this simple expression where the 
expression we found is the simplest form ui. u is equal to qk by pk and you knew the 
expressions of qk and pk given here. That is what we use and there is no necessity to look 
at the region outcodes and there is no necessity to take dot vector, look into the dot vector 
whether it is 0 or not then divide all those where done in the previous two formulations.  
 
Liang-Barsky is very simple in terms of the approach and very fast to implement because 
you have the ratio of two integers, find out the floating value t and that t substitutes back 
into the expression for the parametric form of a line and you get the X Y coordinates of 
the line if it is to be clipped. If it is rejected of course you do not need to compute the 
value of u that is of course the case earlier when we discussed of parameter t in the case 
of Cyrus Beck or Cohen-Sutherland algorithm.  
 
But in the case of Liang-Barsky you compute the u as well when you need to clip the line 
otherwise you do not do so. So these are the three algorithms which we have covered in 
this part of the course for clipping the line. Then the next few remaining part of the 
lecture today we will look into the examples of polygon clipping and find what are the 
interesting phenomena there with respect to clipping a polygon with the help of the 
rectangle. So look back into slide we will get into algorithm or a method of polygon 
clipping.  
 
If you remember polygon filling, polygon is made up of lines, a set of n vertices define a 
polygon. If there are n vertices there must be n different edges or sides of the polygon. 
And that polygon may be filled but we have to now clip around filled polygon with the 
help of the rectangle. And basically since polygon is made up of lines clipping a polygon 
involves the lines. So we will use one of these algorithms, we know that. We have one of 
the algorithms at hand.  
 
We have a function at hand where we pass a line and a clipping rectangle, the line could 
be easily be clipped. So assuming one of those algorithms which we will use for line 



clipping if necessary we will see how polygon can be clipped. Let us look at an example 
of polygon clipping using a convex shape.  
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Now, a polygon could be of course in the convex shape or a concave shape depending 
upon the property of the convexity of the polygon. I hope you understand what the 
convex polygon is and the difference between the convex and concave. The concept is 
very simple by chance if you not heard about it, if you take a line completely inside the 
polygon completely inside a polygon, two endpoints defining a line completely inside the 
polygon, if these two points are inside the polygon then all those points must also be 
inside the polygon if the polygon shape is convex. 
 
If it is concave it is not guaranteed, it may be or may not be, that is the difference. I 
repeat again, take a line where the two endpoints are inside the polygon, arbitrary shaped 
polygon let us say and I take two endpoints, if all the points of that line are inside the 
polygon also then the polygons are convex in shape otherwise they are concave in shape 
that is the difference. We are interested in polygon clipping so that is the example of the 
convex shape polygon in this case of course a triangle. So the left hand side triangle, the 
convex polygon will be split by this window then I should obtain this result polygon. I 
can have this, I can have multiple components clipped out. 
 
This will be a very interesting problem. I can have this in case this is a case of concave 
polygon as like the case even here we look at this concave shape, both are concave 
shapes but in one case of course I have one component at the bottom when I clip with 
respect to this blue rectangle but on the other case on the top I can have multiple 



components coming that means when I clip I have two independent polygons now inside 
the rectangle. I can have two or more that is possible.  
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So I must have a very judiciously nice algorithm which can handle either one concrete 
shape coming out of convex or concave or I can have multiple components two or more 
which could be clipped out from one complete concave shape only. It will probably not 
happen in the case of convex but only concave shape where you can have multiple 
components. I hope this example is very clear. I repeat again, this is the case for a convex 
shape clipping and this is another example when I have for concave shape I can have one 
or even multiple components. Let us move ahead to know how do I clip a polygon. 
 
The methodology of clipping, we will illustrate only with figures, you can write the steps 
of algorithm yourself as we keep moving along. The methodology is, change position of 
the vertices for each edge by line clipping. Remember a polygon consists of set of n 
vertices or n edges. So, in effect clipping a polygon with respect to a rectangle edge, the 
edge of the rectangle which is now used for clipping, it will clip the edge of the polygon 
which is a line and we know how to clip a line by any of the three algorithms which we 
have studied so far.  
 
So basically we are adjusting the vertices of the polygon by clipping. That is what the 
essential methodology is and we will clip with respect to the edges. There are four edges 
of the rectangle which are used for clipping. So we will use one edge, then the second 
and third and fourth like that in some order we will go. The order is in fact immaterialize 
as we will see here. As we see here the concept of the methodology is we need to change 



the position of the vertices for each edge of the polygon. Remember each edge of the 
polygon by the method of line clipping. So you may have to add new vertices to the list.  
What is the list? Initially this list consists of a set of vertices of the polygon. In this case 
you would take this polygon marked by the red boundary there are 1, 2, 3 and 4. I repeat 
there are 1, 2, 3 and 4 vertices in the list for the polygon and let us see how many remain 
after clipping. How many vertices and edges remain after clipping? Right now the 
polygon has four edges and four vertices and we will find out at the end how many 
vertices and edges remain. It would be less, it would be more, let us find out so we may 
have to add on. So what we do first? Let us try to clip this polygon with respect to the 
right vertical edge.  
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So what it basically means is I am putting this shaded bounding box which will say that I 
will retain the part of the polygon which is in the left side of the right vertical edge and I 
will suppress all the amount of the line or the vertices which is behind the shaded area. So 
I am trying to explain this with one vertical edge which is the right vertical edge and the 
result of this operation will be something like this. So as you see here, the vertex have 
been changed in fact I have already added two vertices, number of vertices 1, 2, 3, 4, 5, 6 
so totally 6 vertices. There were 4 and 2 vertices which I have already added. 
 
If you look back into the figure once again, if I roll back this is what I am attempting to 
do. I am trying to suppress the information to the right side of the right vertical edge. 
That means I put a light blue shaded bounding box and all lines and vertices which are 
below are under the shaded area.  
 



I will show them out, that means I am basically clipping those lines, how many lines? 
There are 1, 2, 3 and 4, 4 lines to be clipped and that will result in four new points or four 
few new points after clipping four lines and those are the four new vertices. And I clip 
those four lines I will find out which of these vertices basically pass to that particular 
right hand side from inside to the outside or outside to the inside of the half-planes and 
then when I suppress that information I will be left with this part of the figure. 
 
So I retain that particular shade and say this is the new polygon which I have clipped only 
with respect to the right vertical edge. Only one of the edges have been used so far but I 
keep repeating this process for all the other three edges. What are the other three edges? 
Top and bottom horizontal edges and of course the left vertical edges, left only? What 
have we done so far? In this slide as you can see is clip this polygon here with respect to 
the right vertical edge and this is the resultant figure which I got. The clip rectangle 
marked by the black boundary then the red boundary with the whitish gray shade talking 
about the rectangle after clipping and of course the blue rectangle talks about the points 
on the right hand side of the right edge which have been clipped and chopped off. 
 
Now we clip with respect to the bottom edge and you can see in the figure here, I repeat 
again, this was the figure on the right hand side which was left after the clipping with 
respect to the right vertical edge. Now when I clip with respect to the bottom horizontal 
edge I will add still one more vertex. I repeat, I delete one vertex and add one more 
vertex so the number vertices are now remaining same, 1, 2, 3, 4, 5, 6. There are 6 
vertices but the new shape of the polygon as you can see is given by this. Now two more 
edges are left, the left vertical and the top horizontal.  
 
I apply the same philosophy, the same logic, the same methodology and the same 
algorithm and now this is the polygon which we will be left over after if I had chopped 
with respect to the left vertical edge. So let us count the vertices now, I have two new 
vertices added one vertices thrown out from the list so I have 1, 2, 3, 4, 5, 6 and 7. So, 7 
vertices, out of them from the old list only one vertex at the centre remains, all the 
vertices which were outside the clipping rectangle have been thrown out. And all these 
vertices are new, 1 is old and remaining 6 are new vertices. Therefore, three edges have 
been used for the clipping. Only one more edge left, this is the one. If I suppress the 
information outside or on the top of the top horizontal edge, now you have to basically 
add one or two more vertices. So how many vertices are you left with now? There are 1, 
2, 3, 4, 5, 6 and 7.  
 
So you have 6 basically 6 new vertices, 1 old vertex in the old list. So I said before, this is 
the example which shows the methodology that essentially polygon clipping is line 
clipping. You have to find out exactly how many polygon edges you have to clip, take an 
edge of the clipping rectangle and pass through all the edges of the polygon find out 
which one you have to clip respectively and you have to add a new vertex. When you 
change from one vertex to other you need to of course add a new vertex and throw out an 



old vertex if the vertex is outside the half-plane then you throw out and the only add 
vertices on the boundary and that is interesting. You only have to add vertices which are 
on the boundary of the clip rectangle, all vertices which are inside the clip rectangle are 
retained, vertices outside the clip rectangle are thrown out and vertices which are added 
are on the boundary of the clip rectangle.  
 
Three parts old vertices in the old vertex list there are two parts; one outside which are 
thrown out, inside which are retained and you add basically vertices on the boundary of 
the clip rectangle. So let me again roll back this animation for you. This was the original 
scenario where we had a red bounding polygon with 4 vertices or 4 edges to be clipped 
with this black bounding box or black window or black rectangle and I first clip with 
respect to the right vertical edge and this is what remains. Then I clip with the bottom 
horizontal edge that is what remains after adding two new vertices with respect to the 
right edge, two vertices with respect to the bottom horizontal edge, again two vertices 
with respect to the left vertical edge. But in edge case I am throwing out one vertex so far 
and here again at the end of course again I throw a new vertex out and add a new vertex 
at the boundary of the clip rectangle. 
 
I hope the idea is clear that you have to throw out vertices which are outside in some 
cases. Not only old vertices are thrown out, new vertices may be added sometimes. 
Initially it may not be on the boundary so that also many have been thrown out. But at the 
end you will be only retaining vertices which are completely inside the clip rectangle and 
vertices which are exactly on the boundary of the clipping rectangle.  
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So may be you just need a methodology to know when to retain and when to add a vertex 
and how the order of the vertices should be changed because a polygon will have the set 
of vertices P1 P2 P3 P4 up to Pn and if that is the list of vertices which you have when you 
are clipping the question comes how do you adjust the vertex and how do you throw it 
out. We will look in to the algorithm. Now we look into the last part of the process.  
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It is processing of polygon vertices against boundary. Now what this basically means is 
the following. I must explain this figure. Well the clip boundary as retained here is this 
dashed white line. Vertical line is the clip boundary, it could be horizontal or vertical but 
I have taken a vertical line. And I say my clipping rectangle is on the left side of that 
clipping boundary. That means this clipping boundary is my right vertical edge. If you 
are looking into the screen this clipping boundary is my right vertical edge of the clip 
rectangle and hence the inside half-plane is inside which is on the left side of the clip 
boundary, the outside half plane is on the right of the clip boundary. I hope this concept 
of half-plane is clear. We discussed about that many times. 
 
Let us say this is a polygon being clipped which is also having four vertices only and we 
are now interested to know what happens when there are two vertices p and S, I am 
considering an edge which runs from S to P. So I am considering only two vertices which 
form an edge of a polygon. Since I said we have to move from one edge to another and 
the edge consists of two vertices of a polygon. So we will take one edge which consists of 
two vertices and see different conditions under which we have to adjust the vertices. So 
in this case this edge S  P has two vertices S and P and we say the first condition both S 
and p are outside are in the outside half-plane or in this case on the right side of the right 
vertical clipping boundary of the rectangle which is clipping the polygon.  
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So the polygon being clipped, the left vertical edge is inside but the right vertical edge, 
there is a vertical edge PS which is completely outside what you do? When you see both 
S and p are outside just delete them from the list, do not produce any output that is what it 
says. So you just do not produce an output because it is something like creating a new list 
after clipping with respect to the boundary because you go through the list of edges and 
the question is which one do you produce in the output list to create a new output list. 
That is what we are trying to do.  
 
I repeat again, an old list of vertices of a polygon and with respect to one clipping 
boundary you are creating a new list which will have some of the old vertices and if 
necessary a set of new vertices which are lying on the clipping boundary. That is the 
methodology we are discussing, there will be a four different cases which will arise of a 
depending upon an edge we are considering with respect to the clipping edge of the 
rectangle and in this case we are talking of an edge PS.  
 
The edge SP or PS is an edge of the polygon which is marked by this dark black line with 
an arrow and the clipped boundary is the dashed white vertical line. I say that this is a 
right vertical line that means my left half plane is inside, right half-plane is on the outside 
of the clip boundary. And in case when both S and P, remember this S note down if both 
S and P are out do not produce an output, output is not produced. Let us look at a 
different condition now.  
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I remember, we were talking about processing of polygon vertices with respect to the 
boundary of the clip rectangle. Now, we talk of an edge of a polygon where S is on the 
outside half-plane and P is inside. Remember, we are talking of the same boundary which 
is the right vertical boundary, you are inside the half-plane is in the left hand side and the 
outside half-plane on the outside but the same concept holds good whatever we were 
discussing for all the four edges of the clip rectangle. 
 
We apply the same philosophy for all the four edges whatever be the edge you are 
clipping. And the edge of the polygon you are clipping against an edge of this rectangle, 
this same philosophy holds good. We have seen in the previous case when both S and P 
are out we do not provide an output.  
 
In this particular case of processing of polygon vertices against a boundary if you say that 
if S is on the outside half-plane and P is in inside the half-plane you produce an output 
where you get it clipped, you clip that SP with respect to IP. That means this I is the 
intersection of the vertical edge and edge SP. So the output will be I and then P. So the 
list contains S and then P of the existing polygon.  
 
The output will be produced as I and P, S will not go to the output in this case. I hope it is 
clear in this case when S is out P is in. I repeat again, output is I and P, what is I? That is 
the clip point, that is the intersection between S P and the clip vertical line and you 
already have three formulations of line clipping where we know exactly how to get this 
point I. That is very easy, you can use any one of the methods or formulations of Liang-
Barsky or Cyrus Beck or Cohen-Sutherlands parametric form to obtain the intersection 
point. 



Next is S and P both are inside the half plane. That is the case that is the polygon being 
clipped, S and P are the vertices which are completely inside. You produce only the P 
output, this is very interesting, you do not produce S. We can almost guess why it is so 
because this S has been produced as an output in the previous condition which produced I 
and then it produced S. So do not produce an S anymore. The order must be preserved in 
that sequence. In the list of vertices of polygon no polygon vertices repeated twice in 
general in that sequence. So you do not produce S here, you just produce the output P in 
this case. 
 
We are talking of both S and P. So we have already considered three cases; first case was 
S and P out, second was P out S in, S in P out and then last case is S and P both inside. 
This is still a fourth case left, fourth case left is this when S is in and P is out the output 
produced is the intersection point only. That is the I, this is very interesting. I roll back all 
the four cases one after another in the fourth. This is the first case when both S and P are 
out, do not produce any output.  
 
If S is out P is in produce two outputs in this order, the order is very important in this 
case. Output produces I intersection that is the first output and second output is P in that 
order you produce. When both S and P are in only produce the output P and in the last 
case when S is in P is out produce one output. Not like the previous case when one was in 
the other was out you produce two output when the line was getting from out to in. In this 
case the line is goes from in to out you produce one output which is the intersection point 
only. As you can see with these four cases the polygon has been clipped. 
 
If you see the animation with the four slides not only animation step by step, this was the 
original polygon, I produce two outputs see here I and P then comes the other point the 
low left P and then finally this produces out. These four star points are the points of the 
polygon which we will be retained the other two vertices will be thrown out. So with the 
help of this demonstration with these four different cases of edges line with respect to 
completely in completely out or traversing from inside to outside or from outside to 
inside we have four different outputs of vertices been produced. And in this case you 
have already seen how a simple polygon can be clipped with respect to one such edge, in 
this case it is a vertical edge. The same philosophy applies for all other edges that is the 
other left vertical edge or also the top horizontal or the bottom horizontal.  
 
I hope the concept is getting clear because this if you have followed you have seen that 
the polygon has been clipped and we get the two old vertices in the list which are inside 
the polygon in inside the half-plane and we throw out the two vertices which are on the 
outside half-plane and we have created two new vertices which are on the boundary. If 
you look back into the figure what was the original polygon? This was the original 
polygon, four vertices. And after all the clipping in the different four stages we have 
thrown out the two right hand side vertices which are in the outside half-plane.  
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We have retained the two vertices on the left hand side half-plane and we have created 
two new vertices which are on the clipping boundary the dashed vertical edge. So this 
four star marked points are the resultant output of the polygon after clipping. I hope this 
concept is clear of how to clip the polygon edges with respect to one of the edges of the 
clipping rectangle. Now we have two edges, edges versus edge clip. 
 
We have edges of the polygon and edges of the clip rectangle also or the clipping window 
and we know how to handle the edges depending upon the condition completely in 
completely out, inside to outside, outside to inside, how to produce the list in terms of 
output and creating a new list of vertices basically throw out vertices and keep on adding 
vertices. That is the concept basically and the basic philosophy is again line intersection 
line clipping.  
 
Line intersection line clipping will produce as a mid point outputs I on the boundary 
which are the very basis of polygon clipping which uses the line clipping algorithm. Now 
there are problems with only this part which are called the multiple components, which 
are on the multiple components. If you see this particular concave polygon on the figure 
then you will see that you will land up with two different components of polygon. How to 
handle such a situation, let us solve this problem in the remaining time and that is the 
only problem which remains otherwise the methodology is the same. 
 
Use the same methodology to clip the lines. Lines means the edges of a polygon with 
respect to the four two horizontal and two vertical edges of the clip rectangle and let us 
start with the top horizontal edge which is labeled by this brownish line.  
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Remember, the rectangle is in black and the polygon is in blue shade and the top edge 
which I am considering is labeled by another line which is about grayish in color. This is 
the input, this will be the output which you will have after clipping. We consider only 
that part the top one. If you see here that is what we want to do. We should retain the 
parts of the polygon which are only below that line and throw out the parts of the 
polygons or the edges of the polygon which are on the top part of the line. So the 
resultant part, so when we go inside, if we apply that S and P logic as you are going from 
outside to inside you remember, you traverse along the boundary of the polygon clock 
wise, that is what we do. In this case we will be traveling anti clockwise but you can 
traverse clockwise and anti clockwise you can follow the same logic.  
 
Let us traverse the edges of the polygon in a counter clockwise manner for you and as 
you are seeing here this is the direction of an arbitrary polygon which will be moving 
counter clockwise and we will do that for this polygon, apply those logic of S and P both 
in and out sort of a algorithm which we have studied so far and see what happens. So as 
we enter from the outside to the inside the output will be two. One will be that the outside 
vertex will be thrown out and will be producing a new list which will have one vertex on 
the line at the intersection point another which is at the other end points. 
 
Now the next one, as you go horizontal from this vertex to this both points are inside so 
we produce the output here. The same thing as we go along, in this case next two edges 
which we have considered are all inside so you just produce the final output, the same 
thing here as well. Now when you consider this edge we are going from inside to the 
outside. When you go from inside to outside the algorithm should produce a point which 
is just the intersection point. Remember, I repeat again, when you are traveling from 



inside to outside there were two outputs, one intersection point another point inside. 
When of course two vertices are completely outside you throw it out, do not produce any 
output. When you are going from outside to inside two outputs completely inside the 
same output goes to the output list and then when you are going out from inside to 
outside you produce just one intersection point. That is what you have done here when 
you are traversing from this vertex to the outside here in the middle you are traveling 
from inside half-plane to the outside half-plane and you produce the intersection point 
here.  
 
The next vertex will have two of these because it is traveling from outside to inside again 
from inside to outside you produce the intersection point and that completes the whole 
and the last one will have the two vertices which are outside so you completely throw it 
out. So these are the new set of vertices which will be produced by this polygon clipping. 
How many you have? Remember, if you look into the polygon you had 1, 2, 3, 4, 5, 6, 7, 
8 you had 8 vertices. Out of them 1, 2, 3, and 4 were inside and 3 were outside.  
 
I repeat again, I am sorry 1, 2, 3, 4, 5, 6, 7 and 8, I am sorry there are 8 and in them you 
have 5 inside and 3 outside and you retain all those 5 which were completely inside you 
throw out the vertices which are outside and produce in fact you produce 4 new vertices. 
You have produced 4 new vertices. You have retained the 5 old vertices which were 
inside the half-plane and in fact now you have a polygon with 9 vertices. This is what 
will be the product output produced by this algorithm 9 vertices which will enclose this.  
 
Now if you have a very sharp philosophy to notice a particular point here, if you look 
back in to the figure in the output produced here, the output given by the vertices, you 
join the vertices and try to create the output polygon, you will probably notice a funny 
phenomena here which I will not talk about but let me completely clip this polygon with 
respect to all the other edges and show you the output. But please notice that there is 
funny phenomena, if you have observed it please keep it in mind and we will discuss that 
but this is a polygon which we will have by clipping with respect to the top vertical edge.  
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This is what will happen after clipping with respect to top vertical edge. Ten you clip 
with respect to bottom vertical edge, you throughout the two half vertices outside, these 
two vertices are outside the bottom vertex. So you completely throw them out you come 
up with two new vertices again. Then you clip with respect to left vertical edge and you 
will be left with only this part of the two independent components two multiple 
components of the polygon. 
 
Now let me take out the rounding box the rectangle and show what is left. Of course I did 
not talk about the right hand side vertical edge. You can use that but since there is no 
vertex on the right hand side you don’t want to clip any. That is very simple. Now this is 
the output which you will have. If you look into the figure I will roll it back a little bit. 
This was the last figure which you have. If I take out the box the rectangle and the 
vertical edge you will be left with the figure here. This is the output is as above but if you 
want an output which should be like this, this is your desired output but this is what you 
have, why do you have this?  
 
This was the funny phenomena which I discussed about when I was talking here after 
finishing the operation of clipping with respect to the top horizontal edge. If you try to 
form a polygon by joining the vertices marked by this pink colored star signs you will 
find that you need to join the top right and the top left vertices by a line. Hence you will 
be left with one line at the top which will be created and it will reside here. It will not be 
thrown out and it keeps remaining, it is there all throughout. 
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It is there in the top of this figure on the left hand side here. It is also here and when I 
throw out the boundary this is what you will get. This link between these two multi 
component region which is basically just one pixel wide. It is a small vertical edge and a 
small horizontal edge and that is what you need to clip. This is the output, you need to 
modify the algorithm. Quickly let us go through it. This is the solution for multiple 
components. For say, you need clockwise processing of polygons you follow this rule. 
Let us follow this rule because if you clip without this rule you will get this output you 
will not get multiple components. To get multiple components for out to in pair follow 
the polygon boundary. When you out to in pair means outside point vertex to an inside 
point vertex. When you are going from one vertex to another along an edge of the 
polygon and traveling from outside half-plane to inside half-plane follow the polygon 
boundary and when you are traveling from inside half-plane to the outside follow the 
window boundary in the clockwise. 
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Now if you following anti clockwise follow anti clockwise. In this case I have followed 
clockwise in this example. Let us see what it means. I repeat these two steps once again. 
Read it for say clockwise processing of polygons. If you are going from out to in follow 
the polygon boundary, for in to out follow window boundary in clockwise direction. 
What does this mean? When you are going here that is from out to in outside half-plane 
to inside follow the polygon boundary and so you keep these two vertices. But you are 
when you are traveling from inside to outside please do not follow the polygon boundary 
anymore. You should follow the window boundary and then link up these two that this is 
how you truncate this component and join these two vertices and create a segment here. 
 
I have not completed the entire polygon. I hope you have followed the logic and I am 
going from inside to outside first. Of course I have just skipped over a few steps here but 
when I am moving from outside to inside I marked this vertex. I have marked other 
vertices also. But finally when I am coming out I do not follow the polygon boundary. I 
follow the window boundary and close these two vertices and create a separate polygon. 
The same thing applies here.  
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Mark this; follow in this case a polygon boundary. But you are now following this, do not 
follow the polygon boundary follow the window boundary clockwise direction and link 
these stages. This will help you to create, since these two vertices will now be joined with 
this clockwise movement along the window boundary rather than the polygon boundary 
that will help. Initially what was happening was, this vertex was connected to this vertex 
and then this vertex was connected back again causing a problem for you to have a 
connected segment. And these two multi components were happening as one segment of 
a polygon but you want this output. And now this will happen because you will link this 
one vertex to the other and this vertex to here creating this two set. That winds up the 
discussion on clipping lines and clipping polygons. 
 
Mainly we discussed three clippings of line clipping algorithms; one is the Cyrus Beck 
formulation, Cohen-Sutherlands algorithms based on region outcodes and Liang-Barsky 
the simplest formulation based on four different edges. Then we discussed about the 
polygon boundaries and we have seen essentially the task of polygon clipping based on 
line clipping. You basically add vertices, keep certain vertices or throw out certain 
vertices.  
 
Decision again will be taken based on that into the out movement based on the polygon 
edge when you are moving from one vertex to another. But introduce a vertex, you are 
always introducing the vertex at the boundary of the clip rectangle and for that you have 
to use the formulation of the parametric representation of a line using the line clipping 
algorithm. That is the basis based on that which we clip lines. Of course one has to take 
extra precaution about multiple components so that you have isolated multiple 
components rather than again being linked by a boundary. I hope you have understood 



the problem please try to solve this by yourself using these figures. Follow it clockwise, 
follow it counter clockwise and you take arbitrary shaped polygons and see, apply this 
logic of in and out strategy of generating a new list of vertices and then multiple 
components, follow the polygon boundary, follow the window boundary and generate 
multiple components.  
 
Thank you very much. 
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