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In the last two lectures on curve representation we discussed about parametric cubic 
curves and cubic splines. We also introduced Bezier curves, the Bernstein basis and we 
will start from where we left off in the last class and continue with Bezier curves and then 
move over to surfaces. So we will have lots of equations and derivations so kindly be 
ready. And of course a few illustrations will be also accompanying the mathematical 
expressions for each of these curves representation. So Bezier curves we talked about this 
representation that it must lie within this polygon, the starting point, end point, tangents 
to the curve should be the first and the last edges of the polygon. 
 
And the equation of the parametric Bezier curve t is running from 0 to 1 is given by this 
where this J and i is called the Bezier or Bernstein basis or blending functions or even 
binomial coefficients ith nth-order Bernstein basis functions are given by expressions of 
this form. And we will now see what do these shapes depending upon the value of n and i 
that is the order will be treated by two parameters and the value of t which varies from 0 
to 1 we will see how the functions looks like and dictates the nature of the curve. So this 
Bis are also called the control points in the previous expression of the Bezier curve which 
we have seen and we will henceforth called the Jni as Bernstein basis or Bernstein 
blending functions.  
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J and i is the ith nth order Bernstein basis function, n is the degree of the defining 
Bernstein basis function or the polynomial curve segment which is one less than the 
number of points used in defining the Bezier polygons.  
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So if you have n plus 1 as the number of points used to define the polygon that means the 
number of points if it is n plus 1 then n is the order of the Bernstein basis here. These are 
some examples of the BBF or the Bezier Bernstein blending function.  
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If you see here for n equal to two there are three possible values J2,0 J2,1 and J2,2 because n 
is equal to 2i could vary from 0 to up to n. So you have J2,0 J2,1 J2,2. So this is the first 
curve J2,0 this is J2,1 and J2,2. Again hand simulated but if you generate it using a 
computer simulation using the expression given in the previous couple of slides back t 
varying from 0 to 1 you will get the same.  

 

 
How many curves you will get for n equal to 3, for n equal to 2 you got three curves J2,0 
J2,1 J2,2. If n is equal to three you will get J3,0 J3,1 J3,2 and J3,4 curves. So let us look at the 
nature of the four curves. Here is what you get for n equal to 3 cubic Bernstein basis t 
again varying from 0 to 1, J3,0 is the first curve here J3,1 J3,2 and J3,3. 
 
As you can see it is a symmetrical nature of these curves and the smoothness at the 
ending points which lends itself to the curves fitting with respect to the endpoints and 
their tangents. But we will see the boundary conditions of this Bernstein basis first and 
see that they not only have good symmetric properties but also good starting and 
finishing properties in terms of their values and tangents as well. The n equal 2, the 
quadratic, n equal to 3 cubic Bernstein basis functions will look like. And interesting to 
note J3,0 is this one is just replicated mirror reflection of J3,3 similarly J3,1 is a mirror 
reflection of J3,2. Here also the same J2,0 is a mirror reflection of J2,2.  
 
Let us look at the end points. So this was the Bernstein basis of function 0 to 1 and this 
was the Bernstein basis Jn of i is defined as this. We have noted this down in the previous 
class or note this down right now. Also, the t varying from 0 to 1, the end combination i 
is given as this particular expression. 
 
Let us look at limits for i is equal to 0 for this particular function, with the constraint that 
0 factorial which we will need and the 0 factorial and 0 to the power of 0 both are equal 
to 1. So we put this in mind and look at the limiting condition when i is equal to 0 here. If 
you look, that if we substitute Jn of 0 of the t is equal to 0 if you substitute here this 
condition where i is 0 as given here, t is also 0 you will get it as 1. This is what you will 
get so that is interesting to note. That means the n0 of the 0 the starting point when t is 
equal to 0 for any order will start at 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 00:06:53) 
 

 
 
For any order when t is equal to 0 the first curve will start at 1 where if an i is not equal to 
0 that means for any other non starting curve and i is not equal to 0 means 0J and 0 that 
means Jn,1 and Jn,2 and so on that this will start at 0. This is interesting, the first curve 
starts at 1 and all other curves start at 0. Can we verify these using the previous diagram 
for the quadratic and cubic case? Let us go back, yes you can see here J2,0 starts at 1 and 
all other curves start at 0, the same thing here. J3,0 starts at 1 and all other curves start at 
0.  

o n you should be able to 
btain 1 and Jn for all other i not equal to one you should get 0.  

 
Did you follow the logic? I again repeat, J2,0 starts at 1 and all other curves J2,1 and j2,2 for 
the quadratic case starts at 0. Here the cubic case starts at 1 all other curves also start at 0.  
So this is what we have derived here the Jn 0 of 0 for any n, n could be 2, 3 quadratic 
cubic case starts at 1 all other curves for i is not equal to 0 they start at 0. What about the 
finishing case when t is equal to 1 Jn of n if you substitute back into the expression when 
i is equal to n, if you substitute here in this expression i is equal t
o
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That is also an interesting phenomena, that means the last curve and i is equal to one will 
finish at 1 and all other curves will finish at 0. You compare this boundary condition 
when t is equal to 1 with the condition here at the initial condition when t is equal to 0 the 
starting condition. All curves start at 1 and they finish at the first curve the first curve 
starts at 1 and all other curve starts at 0. In the first the finishing condition is concerned 
and the ending condition bound when t is equal to 1, all other curves will end at 0 the last 
curve will finish at 1. Let us go back and check these conditions as well.  

rst one start at 0 all other curves except 
e last one they all finish at 0, this is interesting. 

at some of these curves except the first and the last one will 
ave a peak somewhere.  

 
You see here the last curve j2,2 finishes at 1 all other curves finishes at 0. J3,3 finishes at 1 
all other curves finish at 0. So this is the interesting symmetrical starting and finishing 
condition which you see. The first curve starts at 1 the last curve finishes at 1 all other 
curves except the first one start at 0 all other curves except the last one finishes at 0 and 
the same thing here. All other curves except the fi
th
 
The Bernstein basis which is illustrated using the quadratic and cubic case in this figure 
and it is true for any n, 4, 5 whatever you visualize you must remember. If you remember 
these two figures or those boundary conditions mathematically it will be easy for you to 
visualize the Bernstein basis nature. Of course you can look into the derivatives of this 
expression and find out th
h
 
If you look back here that the J2,1 has a peak at t is equal to 0.5. The J3,1 and J3,2 will have 
peaks at 1 by 3 and 2 by 3 respectively, that is interesting. And all of these curves 
intersect at 0.5. And there of course there are other interesting properties of this Bernstein 
basis which we will see. I hope you have copied at least these two curves because 
whenever we come across new properties in the series of discussions here with Bernstein 



basis you should be able to get back to this figure yourself. It could be difficult for me to 
roll back but you should be able to visualize this figure from your notes and see that the 
property is satisfied so far. Right now just remember the starting and the finishing 
onditions for the first and the last curve, 1 and 0 and this is also 1 and 0.  

starting and the finishing 
oints. And so the curve must start at B0 now and finish at Bn.  

or any t this is also another interesting feature but for any t sum of all the values of the 

r any general value of n that this value 
 1. It will be a very interesting proof, try this out. I should leave some points as a home 

 curve of the next higher order basis 
an be represented in terms of previous basis of lower order basis of Jn minus 1 i and j 

 so on. By 
mmation of some of the product forms 1 minus t and t factor will lead to 1. You can 

c
 
Starting at 1 and all other starting at 0, the last curve finishes at 1 all others finishes at 0, 
the same thing for the cubic case. So, we will roll forward, we have seen the starting case 
and we have seen the finishing case. Thus P of 0 since Jn of 0 starts at 1, the first point B 
of 0 the B0 is the P of 0, the B0 which is the coefficient to be evaluated for the Bernstein 
is the P0. So how do we evaluate the other one using boundary conditions Bn also will be 
P of 1 because Jn of n is equal to 1 we have seen that if you substitute you will get 1. So 
what you get as the coefficients B0 Bn are nothing but the 
p
 
We talked of these as one of the conditions in the last class. We talked of this polygon 
with the end points; the curve must start at the first point and finish at the last point. 
Hence, that is what is the mathematical condition here P of 0 is B of 0 B0 and P of 1 is 
Bn. 
F
entire Bernstein basis for any value of t starting from 0 to 1 is equal to this.  
 
Look at the normalization nature of the curve. Take any t, take cubic or even higher order 
for larger values of n if you take, take any value of t sum up all of them and you will get a 
value 1. And I will leave this as an exercise for you to find out mathematically even for 
the quadratic or a cubic case for any value of t or fo
is
exercise so this is one of them for the class today.  
 
So, coming back for any t this is what you should try to prove or find out. Also verify, 
this is also an interesting proof where the J and i of t can be represented as Jn minus 1 t 
and n minus 1 i minus 1. That means the next order
c
minus 1 and i minus 1 that will be very interesting.  
 
This is something like a decomposition in the sense that one higher order curve can be 
broken into two smaller parts or two lower order curves can be joined together to build a 
higher order curve. And of course I should be more than 1 and all that this is a boundary 
condition here and limit for the case of i which should be of course less than n and it 
should be more than 1. Although I placed in the reverse way but you can follow here. 
This is what I meant that if you are talking of n is equal to 3 any particular curve for any 
arbitrary i can be derived provided those limits of i are maintained from the quadratic 
curves let us say, two quadratic curves can yield a third degree curve and
su
also verify this mathematically as a proof which is possible for you to derive. 
 



So these are the terms which you need to remember to derive these two conditions for 
any t. Sum of this Jni is equal to 1 and the n of i t nth ith order Bernstein basis represented 

 terms of lower or n minus 1 and n minus 1 and i minus 1 to derive these two you will 
 the expressions of the Bernstein basis, you know that.  
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need these formulas which are
 

 
 
I will give you a few examples of the Bernstein basis, this factorial terms and the 
combinations where n and i combination can be written as this. You can use these to 

erive what you will say as the J3,0, J3,1, J3,2 and the J3,3 for the cubic Bernstein basis as 

 figures a couple of slides earlier for the quadratic n 
qual to 2 and the cubic n equal to 3 case they are nothing but these expressions which 

ese two curves for t is equal to 0 and 
 the boundary conditions will start at 0 end at 0. And this curve for t equal to 0 will start 
t 0 and wind up at the value 1 when t is equal to 1. 

d
you can say when n is equal to t we say that there are four curves.  
 
For quadratic n is equal 2 there will be three curves J2,0, J2,1, j2,2 and for a cubic case n 
equal to 3 there will be J3,0, J3,1, J3,2 and J3,3. These are the expressions. I leave it as an 
exercise for you. Use these expressions and very easily substitute them and this is also 
given very simply as it is here, simply substitute that and this is what you get. You see, 
all of these are cubic polynomials of t the J3,0 and you have already seen the nature of 
these curves. We have seen those two
e
you are seeing in the slide right now. 
 
Have a look, with the first curve will start from 1 and finishes at 0 and these two also will 
start at 0 and finish at 0 and this curve will start at 0 and finish at 1. These were the 
properties we discussed for the Bernstein basis. I repeat; this first curve starts at 1 when t 
is equal to 0 and finishes at 0 when t is equal to 1. Th
1
a
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You can rearrange in that form which we discussed couple of classes earlier or in the 
previous classes as well where the P of t for the cubic Bernstein basis or Bezier curve of 
order three when you substitute these J3,0 from the previous expression on to the 
expression of the Bezier you will have this at B0, B2, B3, B1, B2 and B3 are the geometric 
points. We define the polygon and if you substitute and rearrange I leave it as an exercise 

r you to write it in forms of T N and B, T N and G for n equal to 3 this is what you get fo
as your matrix formulation of the Bezier curve. 
 
Again this is a third home exercise which I am leaving now. There are lots of derivations 
here, if I spend time on these I thought you should practice it yourself to gain confidence. 
Simple manipulations are not much difficult, you should still practice and not simply 
copy them from the slide. I leave it as an exercise for you to try these after the class when 
ou go back. This is what you have as your T N and B which you can write from this 
articular expression of your cubic basis. 

y
p
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For n equal to 4 in fact this is what you keep trying again. It will be t to the power 4 
raised and there should be 5 because one more than the number of points, it should be one 
more than the order of the Bezier curves. So you have five control points for the polygon 
nd B0 to B4 and I leave it to you again as an exercise to obtain these matrices as we have 

 then wrote this expression t n terms of T N and G. So you do that same thing for 
e case n equal to 4 that means you derive your J4,0, J4,1, J4,2, J4,3 and J4,4 that is five of 

d as a weightage parametric curve in terms of 
ise to the power 4. So this is what we have for F where the Jis can be written as a matrix 

 from t to the power of 4. If n equal to 3 you will have only these four terms t 
ube to 1 and this matrix N which is the most interesting matrix I can define in terms of 

lambda ij.  

a
done for the cubic cases here.  
 
Remember, we first derived this that means you first derived this J3 is then we wrote the 
P(t) and
th
them.  
 
I repeat again; J4,0, J4,1, J4,2, J4,3 and J4,4 that is five of them. You derive them, obtain their 
nature then write the expression of P and P of t and then try to group these terms into 
different categories and write the expression as given in the matrix form T N and G. And 
sometimes it is written as F dot G where G is this geometric constant vector and this 
triple ending function F could be visualize
ra
form in terms of these Jnis Jn0 Jn1 up to Jnn. 
 
And what are these Jnis? These Jnis are nothing but what we have derived if it is n equal to 
3 then you have J3,0, J3,1 up to J3,3. If n is equal to 4 you would have had J4,0, J4,1 up to 
J4,4. That is what you would have defined as your F. But in terms of T and G if you look 
at the t it is a very straight forward matrix and it depends upon the order n equal to 4 
which starts
c



 
I have formulation for this lambda ij to define the elements of this matrix for n equal to 4 
or the previous matrix n equal to 3 here. You look at this matrix in fact the lower 
triangular one is almost as in all matrix, element 0s in fact they are the upper left 
triangular elements only. That is what we can define in terms of this lambda ijs and the 

rmula in this.  

gular values has 0s. This is for n equal to 3 
nd for n equal to 4 the same thing happens.  
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Please note down the lambda ijs. If i plus j is lying between these and 0 to n then you can 
use this formula. If i plus j exceeds the value of n you use the value 0 this will help you to 
see that these elements are non 0s in the left upper triangular matrix in the lower right 
triangular matrix either for n equal to 4 or for n equal to 3 as you can see here the upper 
left triangular has non 0 values lower left trian
a
 
(R

 
 
The upper left triangle is non 0, lower left triangular and this is formulated with the help 
of this lambda ijs because i plus j if it lies between 0 to n. You are talking of elements 
which are lying in the left upper triangular matrix, very interesting, lower right triangular 
matrix elements if you sum up i plus j the elements index to that element of the matrix 

ill roll over and in that case use the value 0. w
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So this is the expression which you have for the lambda ijs and the coefficients of the 
successive binomial coefficients also can be derived. I consider this as another home 
exercise for you and I also request you to obtain the expressions for J2,i and J4,i. 
Computation of successive binomial coefficients also can be obtained using this 
xpression. I leave this as an exercise for you to verify this.  

I leave it as an exercise, the 
uadratic case and the quadruple case with the case of J4,i.  

e
 
This is very simple because this formula was given to you earlier. So that is very simple 
and trivial, it should be easy for you and also I leave it as an exercise to obtain the 
expression for J2,i and J4,i. J3,i is what we have derived. 
q
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So we will move on to a very interesting property outside mathematics which we will see 
as the recursive geometric definitions of Bezier curves. Let us say we take three points 
P0, P1 and P2 and if you have three points that means n equal to 3 what should be the 
order of the Bezier Bernstein basis or polynomials or even the Bezier curve? The order 
should be n minus 1. So if n is equal 3 it should be a second degree. So, second degree 
curve lying within that polygon starting from P0 to P2, tangents should start from P0 to 
P1. Follow that edge first then go somewhere through the middle within the polygon and 
nd tangentially in the arc P0 to P2.  

 of points which will lie on 
e Bezier curve starting from P0 to P2 and controlled by P1.  

u have more number of 
oints. Just look at a triangle, this definition is very interesting. 

e here which I will label as Pa. This is the first point I obtain where the 
urve must pass. 

e
 
And again if you look back it should start at P0 tangentially here, the point up to this. Of 
course you can obtain all these using the mathematics given in the coordinates P0, P1, P2 
in 2D or 3D you can obtain the curve. But let us look at the geometric recursive definition 
which will be very interesting. That means can I find the set
th
 
Of course you can have more number of points. Nobody stops you from having more 
number of points that is P0, P1, P2, P3 and so on. But it will be interesting to first have a 
look at these and then of course extend this philosophy if yo
p
 
We take the bisector point P0 to P1, this labor point i says the bisector, the midpoint 
between P0 to P1 is marked here. Similarly, I mark a midpoint between P0 to P2 it will be 
somewhere here. That is the midpoint from P0 to P1 and the next midpoint from P0 to P2 

is here. I join these two midpoints; the first midpoint of P0 to P1 is joined with the next 
midpoint between P1 to P2. And then I obtain another midpoint of this new line, midpoint 
will be somewher
c



 
The Bezier curve passes through the point Pa it will start at P0 wind up at P2 for value t is 
turning from 0 to 1, t1 to t2 in this case 0 to 1 and it must pass through that point Pa 
within that triangle. This is the definition of the first curve. Now we can use these 
definition recursively to look for points to the left of Pa and to the right of Pa. That means 
within the triangle points between P0 to Pa, have a look into these figure. Now we have to 
look for points between P0 to Pa and the points between Pa to P2 because we are now 
guaranteed that if the curve starts from P0 passes through Pa and winds up at P2 we have 
to look for a point to the left of Pa which lies between P0 to Pa and then again also obtain 
oints to the right of Pa which lies between Pa and P2.  

t Pa how? I roll it once again for you for a clarification, how 
o I get this first point Pa?  

. So this 
oint Pa is a point on the curve obtained from the points P0 P1 and P2 a triangle.  

nd then this midpoint 
gain. This is the same of what I did to get Pa. let me roll back one step.  

2, I can use a similar definition and if I use this I can get another point let us try 
at.  

p
 
Now as you got the point Pa from the triangle P0, P1 and P2. I hope that idea is clear or 
should I roll back once again, this was the starting point. That means you had a triangle 
P0 P1 P2 and I obtain a poin
d
 
Given a triangle P0 P1 P2 my problem is to get Pa. I get the first midpoint the left between 
P0 to P1 then get the next midpoint P1 to P2 join these two lines obtain the midpoint of 
this line which is joining the midpoints. That is the method by which I get it. If I could do 
that to get Pa from P0 P1 and P2, I repeat, if I can obtain this P, remember I leveled it to a 
different shade than the other midpoint because this is the point on the curve
p
 
I can similarly obtain from these three points, what are they? P0 then this first bisector 
and Pa, these three will form another triangle, another polygon P0 this point the first 
midpoint Pa will form another polygon and using that I can get another point here 
through which this curve must pass. Let us do that, I will roll it straight without any steps. 
So from that point I roll forward, two midpoints, one bisector a
a
 
I am concentrating on P0 this first midpoint and Pa and visualize only this part of the 
triangle and see how I can get this midpoint here which is a new point. And this is the 
recursive part that I am using the same logic of P0 P1 P2 to get Pa. As I use this logic here 
I am calling that function again and passing these points P0 and a midpoint here and Pa to 
get the second point to the left of Pa and this is the point which will come. And this new 
point Pb is another point which will be lying between P0 and Pa and the curve must also 
pass through that, recursively I have used that. And I can do it to the right of Pa between 
Pa to P
th
 
Look at the line bisector joining midpoints and the midpoint again and that is the Pc. So 
now you see I have got three points, first I have a function called from P0 P1 P2 to get Pa. 
Then I recursively call those same function and pass P0 this point and Pa and then P and 
to the right of it, Pa second bisector and P2. And I can keep doing this again and again. I 
can generate points between P0 to Pb, Pb to Pa, Pa to Pc, and Pc to P2. All of these will 



start from triangles and I can recursively keep calling them and finally I will get a set of 

his logic but I will probably roll back once more. 
his was the starting point. So the first method was to get the Pa. This is how you get the 

se points. And I keep taking the smaller triangles and keep 
cursively calling them and keep generating points and this is what the set of points 

eep recursively calling them as I keep developing 
ew points and generate newer and newer triangles to the left and right of each set of 

illating. If you keep changing this P1 position 
eeping P0 and P2 unaltered all these points Pa Pb Pc and other points of the curves will 

points and then that is what the Bezier curve will look like. 
 
This is the Bezier curve. I did mention that this curve will pass through the points. It has 
to pass through the point not only it will start from P0 and wind up at P2 but it also must 
pass through Pa Pb and Pc and the rest of the points also can be generated using similar 
function. I hope you have understood t
T
bisecting and that is where you get Pa. 
 
The recursive call from P0 bisector, first bisector and Pa will give me another point Pb 
and another recursive call for the triangle Pa second bisector and P2 and the bisector of P1 
and P2 is this point and P2 so this is the triangle. I can get the third point Pc and the curve 
will pass through the
re
which I join to get this Bezier curve.  
 
This is a very interesting recursive geometric definition of Bezier curves. I hope you like 
the methodology with very little mathematics in terms of matrix multiplications, cubic 
degree manipulations, permutations, combinations, starting point, end point with 
Bernstein basis. It is a very interesting phenomena here, how recursively I can keep doing 
this function of obtaining two bisectors of the triangle edges joining them get the 
bisector. This is the main function, I k
n
points I generate. So this is what it is. 
 
Now look into the points, so now if you feel here that the curve starts from P0 and passes 
through these points Pa Pb Pc and has 2 of course end at P2 you can see that the overall 
nature of this curve can be controlled by osc
k
change and so these are my control points.  
 
I keep changing P1 and my curve gets varying and I can add a few more points. And I can 
add a few more points and all these have to follow that particular logic. So I leave it as an 
exercise for you to read about what are called the B-splines represented as blending 
functions. Of course remember we have talked about cubic splines and Bezier curves. I 
think with the time available to us we have to move to surfaces. So I leave it as an 
exercise for you to read about cubic splines using Bernstein basis, splines using Bernstein 

ersion from one format to another. And knots control and 
not points how they play an important role and also the condition when B-spline could 

become a simple Bezier curve.  

basis which are called as B-splines. 
 
Remember, we talked of cubic splines and Bezier curves with Bernstein basis. Merger to 
splines with Bernstein basis are called B-spline. Very interesting functional forms read 
about B-splines which are also widely and commonly used represented as blending 
functions. Also, read about conv
k



 
I leave these as an exercise for you to read due to time limitations available to us in the 
series of lectures. We will move on to surfaces. And this is a trivial example of a sphere 
which you know, the Cartesian coordinate form, a b c the center of the sphere in 3D, R as 
the radius and this is the parametric form in fact it is representation of the sphere or 
quations of this sphere in polar coordinate form r theta and fi in 3D. 
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I started with the simple example because the sphere is the most common example in 3D 
surface which we used. But before we move on to generic expressions of quadric surfaces 
and in fact complex surfaces based on even Bezier we will go through a very few other 
examples very fast before moving on to generalized expressions and see illustrations as 
the last part of the coverage of the curves and surfaces representation. So look back, I 
hope you are able to copy these expressions. The first one is of course very simple and 
straight forward, look into the ranges of theta and fi. This is the equation of the ellipsoid. 
It has three parameters a b c the Cartesian coordinate form on the top and the polar 
oordinate at the bottom, again the ranges of theta and fi are given.  

ere the three different forms of expressions of special types of quadratic 
rfaces.  

c
 
That is an example of the torus. And the expression is given in both Cartesian coordinates 
form with respect to r theta and fi. It is a little bit different than what we had seen in the 
previous case of a sphere and ellipsoid. This is the example of torus. This is an example 
of a super ellipsoid where it is an ellipsoid but you have these coefficients s1 s2 which 
you can vary and give various types of structures to the ellipsoid as you feel necessary. 
So these w
su
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We will look into the general expression of a quadratic surface which is an extension of 
the general conic which we have seen earlier. Remember, there were about six 
parameters for a generalized conic for which we used boundary conditions to evaluate 
bout a couple of classes back.  

efer Slide Time: 00:32:04) 
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So we will look back into the slide and see the general expression of a quadric surface 
which has ten A B C D E F G H I J. So there are ten parameters to the generalized 
xpression or a general expression of a quadric surface.  e
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And the above is a generalization of the general conic equation in 3D in matrix form 
takes the shape like this. This we have done for the conic as well as in 2D and in 3D we 
have a surface a quadratic. So we have this X and the X transpose and this is the 
symmetric matrix S. Now you can insert the factors two here, if you remember we did 
that with the conic in 2D and take care of this 1 by 2 and two terms. These factors in the 
diagonal and the off-diagonal terms are differing due to the nature of the symmetric 

atrix you need a factor of two extra there.  

nic. Now parametric 
rms of the quadratic surface are often used in computer graphics.  

m
 
So it is possible that you can avoid A B C and K, you can avoid the factor 2 there and you 
do not need a 1 by 2 factor if you provide the terms of D F E G and H. These are the 
terms which are contributing to the off-diagonal terms symmetric nature of the matrix if 
you put a 2 there this matrix S has a way and shape without having this factor of 1 by 2 
and 2 inside. So you know these concepts from the generalized co
fo
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Mainly all the time you do not use generalized expressions because they are difficult to 
handle in mathematics unless you are very keen to handle matrix manipulations. 
Parametric forms give a good visualization. So again we will go through the different and 
special types of quadric surfaces and their parametric forms as much as possible. So let us 
look back, ellipsoid is given here, we have already seen this earlier, we will see into this 
elliptic cone. Now, if a is equal to b it is a perfect cone, elliptic cone will have a is not 
qual to b, that is an expression of cone in parametric form.  

 
yperbolic terms and z is fi square hyperbolic paraboloid are very interesting properties. 

the next 
ide. Let us start with the hyperboloid, the expression which I have given here.  

e
 
Hyperbolic paraboloid well we will see the examples of these surfaces in the next slide 
but just note down these expressions. And now we have a cosine hyperbolic and sine
h
 
Elliptical paraboloid also as given here and then we have the hyperboloid in general 
given by a product of a cosine and a cosine hyperbolic multiplication and a sine 
hyperbolic term in z and of course the parabolic cylinder. So we have about six of these, 
at least four of these expressions or for four of these cases will see example in 
sl
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Let us look at how the hyperboloid looks like. That is an example for a hyperboloid. It is 
a wire frame diagram shaded with a color to give you not the effect of intensity 
illumination like Phong and Gouraud but this color indicates the direction. So you have 
three axis x, y and z and that is how the hyperboloid will look like in terms of the wire 
frame diagram. We will provide a sketch of this hyperboloid which will actually look like 
something like this. I think it is easy for you to visualize these sketches where there are 
ertain planes provided at the origin on the top and along the x y plane.  

go ahead and see other shapes such as the parabolic cylinder which is 
ery interesting. 

c
 
We have along the z plane as well and this is the sketch from the wire frame diagram 
given here. And then the expression of the hyperboloid was given in the previous slide as 
in the left bottom corner. That is the hyperboloid for you, the wire frame and the sketch 
diagram we will 
v
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The parabolic cylinder is easy for you to visualize. It is a cylinder with a circular arc 
would have been a normal cylinder since the arc is parabolic now and it is called a 
parabolic cylinder. We had expressions of these earlier as well. Elliptical paraboloid is 
very interesting. The elliptical paraboloid looks like a bowl. Expressions were given in 
the previous slide. And then we have the most interesting the hyperbolic paraboloid. 
Hyperbolic paraboloid’s sketch is given here. And I request you to use a computer 
simulation tool box in computer graphics to generate these surfaces or use your own c 
plus plus OpenGL concepts and draw these figures and create a wire frame. These are the 
examples of quadratic surfaces, hyperboloid, parabolic cylinder, elliptical paraboloid and 
yperbolic paraboloid as well.  

gon 
ertices in that direction. Now, these Bezier surfaces are extension of Bezier curves. 

h
 
We will move on to Bezier surfaces which are extensions of Bezier curves. Degree of the 
surface in each parametric direction is 1 less than the number of defining poly
v
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We talked of cubic splines, Bezier curves. We talked of quadric surfaces, now we move 
to Bezier surfaces as for a generalized conic we moved on to a generic surface, a 
parametric form or non parametric form implicit representation. So, for Bezier surfaces 
also the same could hold good where instead of a single curve I will have a set of Bezier 
curves embedded like in a wire frame, a mesh form which will try to represent a surface 
and that is what we call as a Bezier surface. And conditions which we talked about for a 
Bezier curve most of them hold good for a Bezier surface which so we are not going to 
talk about that that right now. So we talk of a polygonal net instead of a simple polygon 

 2D for a Bezier curve.  

e of the defining polygon net so we have a polygon 
et, we will see how that is defined.  

lmost similar to the conditions which we discussed in the last class about Bezier 
urves.  

in
 
Now we have a polygonal net distributed in 3D. Assume it to be a wire frame net 
distributing and you are putting a surface on that so that is the net. So the degree of the 
surface in each parametric direction is 1 less than the number of defining polygon 
vertices in that direction and this is the same as for the curve where we had the number of 
vertices only for a polygon. In fact there is two or three directions now for a surface and 
the surface generally follow the shap
n
 
Continuity of the surface in each parametric direction is 2 less than the number of the 
defining polygon net. And only the corner points of the defining polygon net and the 
surface are coincident. And the surface is contained of course within the convex hull of 
the defining polygon. And the surface is of course invariant under any affine 
transformation. So if you look back into these points about conditions of Bezier surfaces 
they are a
c
 



We discussed about a 2D polygon, the starting point, finishing point that the curve must 
be within the polygon hull that the tangent at the starting and the ending point must 
follow the nature of the polygon at the edges, edges of the polygon and starting and the 
finishing point. So in all those conditions the order must be 1 and less then the number of 
vertices. These surfaces are the extensions of all those curves. So if you look back I read 
it out again, the degree of the surface in each parametric direction is 1 less than the 

umber of defining polygon vertices in that direction. Surface generally follows the shape 

actly the same of what we did for our 
arametric Bezier curve the Knj also follows the same rule. Knj of w follows the same 

, n replaced by m, i replaced by j. 
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n
of the defining polygon net.  
 
Continuity of the surface in each parametric direction is 2 less than the number of 
defining polygon net. Only the corner parts of the defining polygon net and the surface 
are coincident. The surface is contained within the convex hull of the defining polygon 
and it is invariant under any affine transformation so that is the equation of the parametric 
Bezier surface. So now you see there are two parameters u and w instead of t that is what 
you have and these are the control points Pijs and Jni of this is known to you earlier. Let 
us look at the expression of Jni of u it is ex
p
expression, u replaced by w
 

 
 
So the nature of these two expressions is same so we have two parameters u and w 

stead of t in the case of a Bezier curve. So what about the Bezier surfaces and how does 
 look like?  

in
it
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This is an example of a polygonal net. Like a matrix you have P0,0 to Pm into n, m is 
equal to n in this square mesh and we want to fit instead of a single polygon in 2D or 3D 
ou could have fit a curve through this now we have the whole mesh and we want to fit a 

is expression within this bracket, that is a Bezier curve 
r any value of i. So if any value of i running from 0 1 2 or 3 from 0 to n that is a Bezier 

 to relieve a Bezier surface. So you have a Bezier 
urve at the starting and the finishing point of these lines of the surface, the ends of the 

u look back you can have little Bezier curves at starting and finishing points 
nd along each dimension u and w being discussed about and these two directions, the 

parameters.  

y
surface on the 3D domain. So this is what it could result in. 
 
We can have a Bezier curve along all of these at the end and the surface should start from 
this Bezier curve and end at the other Bezier curve and it may not pass through all these 
points but it should have the other properties. So if you see here the Q(u, w) which is 
given by this expression j indices running from 0 to n and m can be represented by this 
expression where, if you look at th
fo
curve for any vertical value of i.  
 
And similarly if this is assumed to be a constant the outside expression also is a Bezier 
curve. So basically it is a combination of Bezier curves in two dimensions. You have a 
sequence of Bezier curves say along x and a sequence of Bezier curves along y they are 
all interpolated and combined together
c
surface is not end points of the curve.  
 
Ends of surfaces will be lines or curves. So in one direction which you have which is x let 
us say in x y plane which is U controlled by the parameter U and in other direction you 
have w which is controlling other direction. So that is what you have for your Bezier 
surface. If yo
a



 
The Bezier surface in matrix form can be written as this where you talk about the ts in the 
case of curves so you have Us you have Ws and this is the matrix B. This is the matrix B 
which is the set of coordinate points which defines where the surface should lie, defines 
the geometry and well U and W are defined here already, U and Q as defined this is the 
parametric row vector and the column matrix B is the 1. So if we look at n and m what 
re n and m? That depends upon the degree of the curve you are fitting. 
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So if you have a 4 into 4 bicubic Bezier surface in matrix form this is what you will get.   
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We will look back in to the expression of Q(u, v) you have U N B M transpose and W. u 
and w are given, this is u and this is your w. We discussed about this earlier depending 
upon the order. Then you have N B and M. When we talk of N B and M this is your N, 
this is your B matrix and this is your M. If you see, these two the N and M are same. N 
and M are same and they look like what can you guess? You have seen this matrix 
earlier. This N and mat M matrix one is the transpose, of course the other one since it is 
symmetric it does not matter much in this particular case. You have seen this matrix 
when we discussed about the matrix representation of the cubic Bezier curve.  
 
Cubic Bezier curve had this matrix which we defined with those coefficients lambda ij at 
the beginning of the class today lambda ij for the N into M matrix. That is the matrix here 
which you have, the bicubic because there are two of those and these are your Bijs the 4 
into 4 points in space which define the polygon net. You have the four control points, 4 
into 4 that is 16 of them which define the polygonal net and those are put into the matrix. 
So, if you want to fit a 4 into 4 bicubic Bezier surface using a matrix equation you need 
this cubic matrix form from the Bezier curve you need these elements up to the order in 
which you want since it is bicubic it is cubic nature and you just put this 16 elements in 
this particular form. 
 
It may not always be the case that you need to fit a bicubic curve only over 4 into 4 points 
in space. You may be given 5 into 3 a matrix of 5 into 3 points instead of 4 into 4 or it 
could be 4 into 5. So what do you do, you may need to fit a bicubic Bezier surface 
because that dictates the order of the surface and you may need to fit over control points 
given by the geometry condition which could be 4 into 4 that is 16 as we have seen 
earlier or it could be even 3 into 5 or 5 into 3. 
 
So what happens if it is 5 into 3? Let us take a case. When we talk about non square 4 
into 4 bicubic Bezier surface in matrix form and if you look at this 5 into 3 a non square 
matrix is what you are using and the matrix m into n is no longer the same, they are not 
symmetric, they are not the symmetric of each other. 
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This is the matrix which you obtained earlier for the case of the fourth degree Bezier 
curve. J4,0 J4,1 up to J4,4 fourth degree Bezier curve when we discussed about this matrix 
this is the matrix form and the other one should be the quadratic. Therefore, based on the 
number of points given or the control points over which you have to fit the surface you 
have to decide on the order of the elements in the direction u and w. The parameters u 
and w will point at two different directions of the surface let us say x and y in this case. 
So u and w you will define that if there are five points along a particular direction you 
can choose up to fourth order.  
 
If there are three points minimum we leave three points then you can use the second order 
and hence those matrices m and n which we discussed earlier will be dictated by the 
geometrical conditions of this polygon net. The geometrical conditions of this polygon 
net is going to dictate two matrices m and n in the formulation. If you look back into this 
expression here you already have what is U and W B matrix is defined by the geometry 
of the control points of the polygonal net. These N and M are the matrices dictated by the 
order of the Bezier surface which you are going to fit.  
 
The order of the Bezier surface which you are going to fit is going to dictate the size of 
the matrix M and N in that expression. So if you see here these M and N which we 
discussed about the bicubic 4 into 4 or a 5 into 3 depending upon the direction U and V 
will all be dependent on B. So if you will roll forward you will see that for a 4 into 4 
bicubic Bezier surface in a matrix form 16 points are given and this is the matrix element. 
Whereas if you have a non square polygonal mesh to be fitted and that is non square 5 
into 3  but you want it will fit a 4 into 4  bicubic Bezier surface then on one side you may 
have up to the order four and on the other side you may have the order two. It all depends 
on the polygonal mesh available. The number of roll points available in each direction is 
going to dictate what is going to be your degree of the order M and N.  



 
I leave it as an exercise for you earlier in this class to check up the equations or obtain the 
equations for J2,i and J4,i and that will help you to obtain this matrices M and N which is 
given in the slide here.  
 
Please follow all the home assignments given and work out all the expressions which we 
have done in the last two classes specifically at the last class today and that will help you 
to master these equations in practice. And before you go to the program in environment 
using any simulation tool box or write a program using a high level programming 
language like c plus plus with OpenGL or PHIGS as your standards in any environment 
you should master this analytical expressions yourself, try to draw these curves then 
simulate and see how these curves come out when you try to plot them.  
 
Either to simulate a curve or to fit a surface or to obtain a curve for a trajectory in 
animation or to fit an experimental data in 2D or 3D you are using these cubic splines, 
Bezier curve, Bezier surfaces or even B splines. We have not discussed the other types of 
curves and surfaces due to the time limitations available to us. But if you are able to 
master this you will be able to learn about any other types of surfaces in terms of B spline 
surfaces or coons.  
 
There are various types of other surfaces which are talked about in literature and used by 
experimental people, computer graphics scientist and engineers to fit various plots in 2D 
and 3D or to come up with representations to represent the solid or to obtain a trajectory 
in a curve in 3D. So I would request you to kindly go ahead with these derivations and 
obtain all the different forms of matrices we have studied so far, also the different 
parametric expressions. Look into the blending functions where two or three different 
curves are meshed together to obtain from one to another and of course interesting 
geometric recursive definitions of the Bezier curves. That brings us to the end of the 
lectures on curves and surface representation in today’s lecture. And in the last three 
lectures we have seen different types of representations of curves and surfaces.  
 
And I would request you to kindly see them again, write them again, try to derive them 
again, run to the mathematics without any help if possible to obtain a control over this 
representation.  


