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Problem Exercise  
 
In the previous lecture, we considered one example that was a problem related to n-operand 
instructions, where n was 0, 1 or 2; here it is in the two operand instruction format. Then we 
considered 4 bits for opcode, 4 bits for source data – that is one of the two data – and 4 bits for 
the destination data. Then while discussing these 4 bits, we said 24 or 16 combinations are 
possible; that is, 16 opcodes are possible. With this opcode field, it must be identified whether 
we are referring to no operand or single operand or double operand instructions. So we said with 
4, only 16 are possible. Actually these are the 16 possible codes. Now this is one way of coding. 
Of course, it is very economical in the sense that all the 4 bits in the field are used; so starting 
from all 0s to all 1s it goes.  
  
There is another way of creating codes with n bites; let us say it is 4 bites itself. For instance, 
how about this? Suppose we have one code; then let us say this is another code; this is a third 
code; then we have this code and then we have this code. Now with 4 bits, I can also create these 
five codes; of course it is nothing but a subset of this. Now the point you have to notice here is 
that if there is a 1 bit, then there is only 1 bit in the entire field. Both these are possible; now I 
say a code must contain four possible combinations. This is also one form of coding, but then 
when you do it this way, being a subset, the entire 4 bits position as in this particular case are not 
used. So you can say that when you make use of all the 4 bits and then fill in 1s and 0s 
appropriately and exhaust all the possible combinations, then we get the entire thing: 24; 
otherwise, with less than 24 also, you can form a code. Actually both these are in use.  
 
Now in a scheme such as this when you have all the 4 bits, this could need a decoder, because 
just by looking at the code and by looking at the position of 1s and 0s, you cannot make out what 
it is. You have to study all the 4 bits in the combination; so a decoder is needed in this particular 
case, whereas in this particular case, it is not necessary. You can just see whether there is a 1; if 
there is a 1, looking at where exactly the 1 is, you can make out. You do not need to study all the 
four aspects. So both these combinations are possible; for instance, a scheme such as this could 
be called a linear select scheme. It is called linear mainly because you have only one at a time; 
one of the different positions in a linear manner. So we can form different types of codes; both of 
these are actually in use. What is the advantage of having this? The disadvantage was seen: that 
you need a decoder later on to understand which code it is. Now what is the advantage of this? 
The advantage of having this is that you can include as many codes as this particular scheme 
permits. That is, 16 codes are possible. Anything is going to be less, any other type of coding. 
This is one point we have to note mainly because we have to consider the second problem, which 
will come to this.  
 
 



Now let us take a look at the chart and then see what the second problem is about. The second 
problem says a CPU addresses the data through its six registers in one of twelve different modes 
– you remember I was talking about the instruction format in which we not only give the opcode 
but also mode with reference to the register. So we will have to formulate that. Then this 
particular CPU is to be designed to support different types of instructions. The numbers are given 
– you have 10 arithmetic instructions, 15 logic instructions, 24 data-moving instructions, 6 
branch instructions, and 5 control-type instructions. In other words, the study of any instructions 
we said will consist of studying each class of instructions.  
 
Now add and subtract for instance will form arithmetic instructions, then or, and, NAND nor, or 
– these things will form the logic instruction; then data-moving instructions move from one 
register to another register; any transfer from memory locations to register and so on so forth will 
form the data moving instructions. The six branch instructions, normally the programs is 
executed instruction by instruction, but then suppose you stop and when you do not consider the 
next instruction but then you take an instruction away, then you have to branch away and stop 
the normal sequencing operations. So branch instructions are needed for that. Then, there are 5 
control types of instructions; there are different types of instructions here – for instance, if in a 
particular board a particular bit or a set of bits must be set; they will be instructions, so this all 
these types of instructions will form an instruction set. These instructions, respectively it says, 
for arithmetic instructions 20% and so on and so forth.  
 
All these are single operand or no operand instructions, that is, the single operand and no 
operand instructions have been grouped here and the remaining, the rest of them, are double 
operand type. So again we are back to the n operand case, there is a no operand, 0 operand and 1 
operand and then 2 operand case. Now it says, what is the minimum size of the CPU instructions 
word? We will note this point, minimum size, and then I will talk about it again later.  
 
Let us write down and then note down the various points. What did it say? May be you can make 
use of this op-code. We have to find out the sizes in this particular case, and we have to work out 
a few more things. This address has data through its six registers, so the source data will be 
referred to through two different fields: one half of the field will be referring to the register, and 
another half of the field will be referring to the mode. So mode of the source data is one thing – 
and similarly this also. This is of course for double operand instruction. So what it says is that the 
CPU addresses the data through its six registers, which is the number of registers you have; in 
this particular one, it is 6, then 12 different modes; the number of modes is 12. Now what is the 
question? Let us take a look at the problem again – it says, what is the minimum size of the 
CPU’s instruction word?  
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Now working out the minimum size, the way you can do it is only by saying to accommodate 
reference to any of the six registers, for instance here or for here. If you want the particular 
instructions word size to be minimum, the way to go about is only by decoding. In other words 
we have to code, given that this will be a binary word, we will be using the binary thing, which 
means for referring to any one of six registers you need six unique codes like this, and obviously 
you need at least 3 bits, because 23 is 8, and so you can accommodate certainly the 6 that you 
need.  
 
This implies that you need a 3-bit code. So now you have this register part; this particular 
register part of the field will be 3 bits in size. The same argument holds true with reference to 
modes. You have to accommodate as many as 12 different modes. This implies that the 
minimum you need is 4 bits, because 24 is 16; in the other way, 6 can be accommodated. 
Similarly here, 24 are 16 and so 12 can be certainly accommodated; so you need 4 bits here.  
 
Now the way we arrive at that is mainly because we have to look at the chart; that is a minimum 
size. For instance, you need not go in for this now; referring to six registers can also have the 
register subfield; it can also have 6 bits. Similarly for the modes you can also have 12 bits, but 
then it becomes unwieldy; you are not fully utilizing all the things. Now the question is how to 
determine the opcode size? That is the main problem, for which you have to work out the details. 
What are the details? Let us go to the chart and look at the problem again; well, we have these 
various class arithmetic instructions, logic and so on and so forth. Each of these and how many 
percent of these are single operand and no operand is given. So let us prepare a table and then 
work out the details of that. 
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So let us first take the instruction type and the numbers of them; it has been given single operand 
or no operand; so single operand or no operand is clubbed together; then we have the double 
operand instruction; so we have to work out. Now first, we take the arithmetic type of 
instructions; actually, it does not matter what it is, arithmetic, logic, data-moving, branch control. 
In arithmetic type, it is given that the CPU must support 10 instructions; and then in logic type 
the CPU must support 15 instructions; the next is data moving instructions. In data moving 
instructions we have 24; then in branch instructions we have 6. Then we also take a look at the 
chart: we have 6 branch moving instructions; then 5 control type instructions; 10 of arithmetic 
instructions; 15 logic instructions; 24 data moving instructions; 6 branch instructions; and in 
control type, there are 5. Now it is further given that 20% of this will be single operand.  
 
First let us write down 60% of this; when it says 50% of this or 60% of this, these are single or 
no operand. So what is 20% percent of this? It will be 2; 20% is one-fifth, so it is 2; then 60% of 
this will be 9; 50% is half, that is, 12; again this also 50%, that is, half of 8 is 4; 60% of 5 will be 
3. So how do you determine the double operand? Now why should we work out these double 
operand instructions? Because we have to see a common format, is it not? A common format is 
needed and the common format will be for double operand case; that is, the highest number 
operands. So if you work out for double operand for which we already have some partial 
information, that is source and destination, this will give us some information. Now let us see 
about opcode. Except for the opcode part, we already got rest of the information for the double 
operand instructions. 
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So if we knew how many double operand instructions must be uniquely identified, then we have 
solved the problem because this is what we have been looking for.  Once you have the common 
format for double operand, later on it can be verified and then seen whether single operand and 
no operand cases can be accommodated with the same format. Now it is given as single no 
operand case and double operand; so these are the only three combinations. So 10 minus 2 or 8 
of these will be double operand instructions. Similarly, 15 minus 9 or 6 of these will be double 
operand, 24 minus 12, that is, 12; 6 minus 3, so 3 of these, 5 minus 3 or 2 of these. So the total 
number of double operand instructions will be 2 plus 3, which is 5, plus 12, which is 17, plus 6 
or 23, plus 8 or 31. So there are 31 instructions, double operand instructions, which must be 
uniquely identified. Now that means we need 31 codes for double operand instructions alone.  
 
What does it mean? It means again going for the minimum, what is that? Let us take a look at the 
chart again, remind ourselves that the minimum size has been asked of us. So in the same way, 
the opcode also will have to be in this kind of coding. The minimum would be 25 because 25 are 
32, which accommodates the 31 that we need. That means we need at least a 5-bit opcode field. 
Now let us make sure that the rest of them can be accommodated minus 31 go for double 
operand instructions. So one code is left; that one code will identify single or no operand cases. 
You can just total them up and then check whether it can be accommodated because of single 
operand is one in which we need at least one data field, operand field, for referring to the single 
operand, which means this particular field can be used as extension of the opcode and this one 
has already 7 bits. So with the remaining one code with 7 bits, 27 will be possible. So it has a 
maximum of 27 and remembers there is only one code left; so of the 27 minus 1 will be used for 
maximum, for single operand, because we need to have at least one for referring to the no 
operand of that. Because there is only one code that is left, that one code only says whether it is 
single operand or no operand.  
 
 



Then we have 27; you can just work out and make sure that this is 20, but remember that with 27 
codes, the entire thing cannot be used for single operand. The minimum is 27 − 1 is single 
operand and the remaining thing in that particular one will indicate no operand, because that is 
only one minimum. Then no operand is referred to, we will have another 27. Anyway, actually 
the problem itself does not say it; we do not have information about how many single operands 
and how many no operands are there. As you can see, when you add this up, it is going to work 
out for less than 27 and that is for the combinations of single and no operand. So this is how you 
work it out. Now what is it? It says 5 plus 4 is equal to 9; plus 3 is equal to 12; plus 4 is equal to 
16; plus 3 is equal to 19 bits – this is the size of the instruction word. 
 
Take a look at the chart – so minimum is 19 bits; that particular thing is the instruction word. 
Now let us just quickly review the two things – the first problem we saw how, given the size of 
the instruction word, how many instructions can be accommodated, how many different types of 
instructions. In this second problem, it is the other way – given the number of instructions in the 
type of instructions, what will be the size of it? So, only variations of these will be there 
generally. Now let us go on with the next problem, that is, problem number three – the next chart 
please. This calls for information; let us see the problem. You have to recall whatever you have 
done early in the lecture; what is it? Just read the problem; the format of the micro-word of a 30-
state micro-program controller. So it is back to the controller design and micro-programmed 
controller; so it is micro-programmed implementation.  
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Now this particular format consists of a 4-bit test field; you remember the format we generally 
have test field, next test field and output field. That is what you have in any micro-word for a 
micro-program control. So the size of it is given as 4 bits, 5 bits and 7 bits, respectively. Now 
given this information, what are your inferences about the number of inputs to the controller; the 
number of outputs from the controller; and the algorithm for deciding the next state? Let us 
quickly recall some of what we had seen earlier.  
 



Let us just take an ASM chart. While discussing the ASM chart, what did we say? That from any 
given state, that is, the present state, some output may be generated and then, in that particular 
state – I will just call state P – it checks for an input, and depending on the condition of the 
particular input being true or false, two other states will be there. The system goes into either of 
these two next states. I will call it true next state and this the false next state. Now in any state, 
more than one input can also be checked correspondingly, and if you have more than one input 
we can introduce some extra dummy states and finally bring it to this. For the one present state, 
there are only two possible next states. It is a very general thing that can be done that way. Let us 
not worry about that. Now what is given here? We are talking about the format of a word; that is 
what this problem states. The format of any micro-word essentially is, you have this test field 
and then the next state field; next address or next state or whatever it is; and then you have the 
output field. Now let us read the problem again. In this particular one the controller is for 
controlling a machine, which has a maximum of 30 states. So the number of states will be 30, 
which means, as per this particular diagram we do not know whether for a given particular state 
instantly what micro-word for a particular state is.  
 
For instance, this may possibly be a micro-word for state P. And if it is for the state P, then it 
says the inputs to be tested are nothing but this. The test field will have information about the 
inputs to be tested, and then, depending on the particular input being true or false, the two next 
states – true or false next states – will have to be identified. Really speaking there could be two 
parts – one thing, which gives the true next address and the other thing, which gives the false 
next address. So there will be two subfields of this, and then the output that must be generated in 
the particular present state P. According to this, we have the number of states as 30; then how 
many bits do we need? Assuming as in the previous one, we go in the economic coding; it is 
economical from the point of view of the number bits usage. So you need at least 5, because 25 is 
32 and that will accommodate 30, which means the next one must be 5 and this part also must be 
5. By this for a given state we have to identify both the false and the true next states.  
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So you need a 5-bit subfield for, say, false next state, and another 5 bits for true next state. Now 
what has been given in the problem? Take a look. It says the test field is 4 bits; its next field is 
only 5 bits and then you have a 7-bit output field. So now we said we need at least two 5s but 
what has been given in next field is only 5 bits; test field is 4 bits; and then the output field is 7 
bits. We have no choice; we do not have the 10 that we require; we have only 5. Let us see the 
chart – which one indicates the number of inputs to the controller? The test field indicates that, 
because in any micro-word you have to give information of for every state; the inputs to be 
tested must be given in the test field.  
 
Now it is given that the micro-word is 4 bits. Why? What do you infer from that? Four bits 
means the number of tests; so basically that is what we have to do. The number of tests and 
number of inputs is the same; so test will indicate how many numbers of inputs can be there. 
When you have 4, what will be your inference? Go back to your coding. We have both linear 
select and we have decoded type of arrangement. So suppose we use this code the number of 
inputs will be only 4; if you use this code it will be as many as 16. So we cannot say what it is; 
all we can say is that the number of inputs can be anything from 4 to 24; that is the only inference 
we can draw. Let us finish off the other one – what is the next one? The number of outputs from 
the controller is similar to this number of outputs – you would be tempted to say the same thing.  
 
What is the deferral between this and that? Here also, 7 to 27. We will accept the answer 7 to 27. 
It can be even less than 7; does not matter we use maximum 7. Now suppose we say the number 
of outputs can be as many as 27, what is the implication of that? Think a little. Suppose the 
number of inputs should be 24. Let us go back to the code when we use this; this is when you 
have 24. What happens is at any time only one code is possible. Similarly if you have the output 
24 or 7 outputs, at any time only one output can be generated – is it a practical thing to do? Recall 
when we came across this micro-program controller and controller in general in generating the 
data path control signals for the data path and in the data path in different parts. We set the data 
path by enabling and disabling the different parts in the architecture, which means 
simultaneously different signals have to be generated. So this is really meaningless because if 
you have 27, then only one output can be generated at a time.  
 
So it is not really good, but anyway, maybe there is something which is possible. But in the 
practical cases, which you usually come across, it may not be very correct answer. Well, 
theoretically 7 is 27, but practically speaking, it will not be 27. Instead, what can happen is that in 
the 7-bit output, some part can be coded and some part maybe separate. For instance, you may 
have, say, 7; now this one has 2-bit code; this will be a 3-bit code; these two will be separate, 
which means independently I will say this or this or this 3 bit, denoted by C, or the 2 bit, denoted 
by D, can be generated. This means actually simultaneously at least four signals can be 
generated; out of it these 2 bits together form one thing. So this is neither linear select nor 
decoder, but it is in-between these two. Now it is the decode scheme within this C and D, and it 
is linear select or combinations of that also – A B C D. So you can generate them. Now let us 
come back to this third part of the question: it says what is the algorithm for deciding the next 
state? I almost hinted what will be the algorithm. Now the algorithm for the next state must 
indicate to you when the test fails, that is, the input is false. Then you have to indicate one 5 bit 
and with 2, a 5-bit code for the next state.  
 



If it is true to another 5-bit code, it is the true next state. But it so happens that the problem state 
is the only 5 bit that you have. So what is the way? We cannot indicate both; so, for a given state 
P, let us say if it is P, it says test, any one of these inputs; and then in the state B, generate any 
one of the outputs as indicated. And it says you can give only one 5-bit next state. Which one? 
That means basically either you can give this true or this false or you can give this false but not 
the true; only one of these codes is possible. So obviously that is the only way you can go about 
it. What is the problem actually? It says what is the inference about the algorithm for deciding 
the next step? The algorithm must be somewhat like this. We can write the algorithm. If the test 
is true, then next state will be, let us say, the present state plus one, which you do not have to 
indicate anywhere. Otherwise, the next state is as given by the 5-bit field. That is, whatever is 
given in the 5-bit next field? So if this is the algorithm then it is enough if we give false in the 
particular one.  
 
The false next state is being given; the true is not being given. Remember it can be the other way 
– you can also put if the test is false – both are possible. So if the test is true the next state for the 
controller will be the present state plus one, which can be designed. Is it anything new? No. 
What you do in program counter is always incremental by one; use the program counter to fetch 
an instruction and then the next instruction is got from the next location, for which the program 
counter content is incremented automatically. Only when it is not so, whenever a branch or jump 
condition comes, some other address will have to override.  
 
So the same logic can be applied here – if the test is true this has to be designed; in the next will 
it automatically be the present state P plus one. So as I have formed here, this code for Tn will be 
T plus one, that is, the next one, whereas this false next state will be indicated to the 5-bit field. I 
hope you have noted enough points to see how exactly the format of a micro-word is arrived at, 
and also important points such as assuming the next field as the present one plus one. That is an 
assumed next field; this one will be the given next field, which is given in the format itself. So 
this you may say is assumed next field: assumed to be the present one plus one, assumed next 
state is address, whereas this particular one is given next state in the word itself, micro-word. 
And another important thing is that when you can go for linear select and when you cannot really 
go for it – it will be meaningless to generate only one output.  
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Let us take another problem – this is to do with the instruction cycle. Let us see what it is – the 
chart says for a given CPU, the first machine cycle M1 always consists of four states. You have 
to recall here that an instruction cycle consists of machine cycle, which consists of states; so here 
we have the details of that. The first machine cycle consists of four states – that is always so; and 
the remaining machine cycles consist either of three or four states. So it may be three or four 
states; it depends on the instruction. The instruction cycle consists of a minimum of two and 
maximum of five machine cycles. So this particular thing, a variable minimum of two, would 
mean M1 and M2, let us say, and maximum of five. So M1 is always there, then M2 and then 
beyond that M3, M4 and M5 are there.  
 
Now it says the CPU has a clock rate of 50 MHz – we talk about clock rate here because this 
clock rate is the one which is going to define the state duration. Then calculate the shortest and 
longest instruction execution times. How do you calculate? We have to look for an instruction, 
which has minimum machine cycles and minimum states specifically and the one with maximum 
machine cycles and maximum number of states. Now there is additional information here – what 
is that? If every memory access introduces one wait state, what is the memory access? How do 
you identify that? What is the machine cycle? A machine cycle is always entered into whenever 
there is a bus activity. So a memory access would mean actually accessing for some information 
over the bus. Now let us work out some details for you to note down from the data given in the 
problem. First of all, an instruction cycle will consist of machine cycles. So this is a machine 
cycle; given that M1 is always there, you may have the rest of the bits for instruction. You have 
only M2 minimum; we said it says that instruction cycle consists of minimum of two machine 
cycles, M2, then optionally you also have M3, M4 and M5. Another thing that is given is that 
about the first machine cycle there is some information. It says that there are four states. In the 
first machine cycle there are four states; essentially it means four clock periods. Do not worry 
about the non-uniformity of it.  
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There are four states – now this is fixed, because it is given that M1 always consists of four 
states, and the remaining machine cycles either consist of three or four states. Each one of them, 
each of the remaining machine cycles, that is, M2 to M5, will consist either of three or four and 
an instruction cycle consists of minimum of M1 and M2 and the maximum of M1 up to M5. 
Then of course, the CPU clock rate is given; we will make use of it later. That is, the clock 
frequency that is given is F clock or 50 MHz, from which we know the state duration. So from 
this point to this point, if you put it as a duration tcl, one over 50 MHz will work out to 20 
nanoseconds. We will check that later. There is one more point we saw. The last line in the chart 
says every memory access introduces one wait state.  
 
What is M1? Let us see: a machine, say, M1, is fetching the instruction; there is some memory 
access. This is for fetching the instruction; there must be a memory access. Similarly, M2, M3, 
M4 and M5 may be memory access. Now what it says is with every memory access which 
corresponds to a machine cycle there is one wait state, which means there is an extra state that is 
introduced mainly because the memory is slow compared to the CPU. So now let us work out. 
Let us note that there is one wait state for memory access for every memory access, which means 
essentially we have to consider this information whenever there is a machine cycle associated, 
which is usually associated with the memory access.  
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Now what is the shortest execution time? First we calculate number of states and then, later on, 
multiply that with the state duration so that will give us the execution time. So for the shortest 
instruction, how will you calculate? The shortest would obviously mean only two machine 
cycles, M1 and M2. During M1 we have four states; then obviously it is for fetching the 
instruction, which means a memory access. So there must be one extra state. During M1, you 
should have five states. Now we are talking about the shortest, that is, the first part of the 
question. Then we have M2. M2 is another machine and it says it has either three or four states.  
 
So the minimum will be three, and there can be a memory access; we do not know. There is 
nothing wrong in assuming there may not be memory access because you follow the instruction 
here and then for executing the instruction, you take three; they may not be memory access. So 
we can as well have it as three states only. So this is for the shortest path, that is, we have eight 
states in the minimum. Then the longest one, the longest instructions execution will be M1 as 
before – there will be five states. Then we have M2 to M5, that is, four states because in the 
longest we have to include all the four states. So there are four states and again since it is the 
longest, we will consider that each one of those four machine cycles has four states and because 
it is longest again, we will assume that everything has memory access; there is nothing wrong in 
assuming. So there are five states, that is, M2 to M5 – we have four machine cycles into the 
number of states.  
 
The longest is four and each has one extra state. So we have 4 plus 1 is equal to 5; 5 into 4 is 
equal to 20. So we have 25 states. For the first question, the shortest instruction execution time 
will be 8 into 20 nanoseconds, which is 160 nanoseconds, and the longest one it is 25 into 20 
nanoseconds, which is 500 nanoseconds. Because there is a state duration, we are calculating the 
number of states for a given instruction. You find that 8 is the minimum and 25 is the maximum, 
and every state needs 20 nanoseconds. So this is how we arrive at it.                              


