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Device Service Routines 
 

In the previous lecture, we took a look at the concept of memory mapped I/O and also 
started the discussion of device service or device service routine, specifically with 
reference to programmed I/O. 
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Now what is this device service routine? After all it is the CPU which is involved in 
executing a program. Now whenever the device needs attention, either the CPU will look 
and see whether the device needs attention or the device we said will interrupt the CPU 
and demand attention. In either case, the CPU must stop whatever program it is currently 
executing and take up a program or what we call as a routine essentially to service that 
particular device which needs attention. Now in the case of programmed I/O, we saw that 
the CPU, which takes the initiative, checks for the status of the device and decides 
whether the device is ready or not. If the device is not ready, it waits in this particular 
loop – I mean as written in this particular program it just has to wait; we can also rewrite 
the program so that if one particular device is not ready then the CPU goes and checks 
another device. It just depends on how exactly you write the program; that is why it is 
called the programmed I/O. Now in this particular one, it just waits indefinitely and then 
when the device is ready it is indicated by 1 bit; that is a ready bit in the status word; we 
have discussed that in detail.  



Now when it is ready, it moves out of this loop and then moves on to service that 
particular device, in which case it just has to effect the data transfer. Since we had 
assumed an input device, what we are saying is that we are moving the data which is 
available in the data buffer of the device to the accumulator, which means, to the CPU. 
So in other words, it is the input. On the other hand if you happen to have an output 
device, it is just the other way but this is for an input device; if it were an output device 
instead of this, what we will be having is just the other way because of the way we have 
assumed the format of the instruction. We had assumed also the memory mapped I/O 
scheme: just try to recall; instead of this we would be having just the other way, that is, 
move whatever we have in the CPU that is accumulator of the CPU – this is the source 
this is the destination you remember the move destination source is the format we had 
followed earlier – so move what is there in the CPU to the device buffer, which means 
outputting. So this is what we will be having for output device; so this in fact is the 
essence of an I/O program. 
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An I/O program would mean granting that the device is ready, making the data transfer. 
Now in programmed I/O, the CPU checks; we will see this is all that is there in data 
transfer. Of course it all depends on the particular size of the buffer; for simplicity’s sake 
we have assumed a buffer of only 1 character or byte, let us say, assuming the 
accumulator is also a character or byte size. So we are just moving 1 byte. Suppose the 
device happens to generate a lot of data, then we have to put a counter. Suppose it 
generates 10 bytes of data, then we have to set up a counter and then assuming this data 
transfer is byte by byte, we have to keep counting and then checking. After 10-byte 
transfer is over, this whole I/O program is over. This is how we have to do; it is part of 
the programming – I will skip that detail. Now let us move on from this programmed I/O 
to the next scheme. The next scheme is one in which the CPU is not taking the initiative; 
it is up to the I/O to interrupt the CPU whenever it is ready. We were calling this interrupt 
driven I/O scheme.  
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As per this mode of transfer, since CPU need not check, we go back to this previous 
program. You see this part is only for checking whether the device is ready or not; so that 
is not there now. It is only the data transfer that may be affected, depending on input or 
output – the data transfer must be effective. I may not be showing all the details of the 
bus here; I will show the necessary connections between the CPU; we will also not bother 
about the memory in this particular case.  
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Suppose we have two or three I/O interfaces that is, one for each device, that is good 
enough. So now the I/O is going to interrupt; the interrupt input is there to the CPU. 



When the I/O is ready, it is putting up the interrupt signal. So the CPU is not going to 
check whether the device is ready; it is only this part that is needed. That is, the device is 
ready when its data buffer is full in the case of input device. In the case of output device 
the data buffer will be empty; that is all the difference between these. So we will continue 
a discussion for input device and then I will just tell you whenever we have talk about 
output device also. 
  
So when the input device data buffer is ready, it is going to interrupt. The CPU is going 
to stop whatever it has been doing and it has to turn its attention to this service part, 
device service. So we said earlier in the case of interrupt driven I/O, there is a context 
switch; that is, a switch from the main program, main routine to device service routine. 
Because it is interrupt, this particular one may also be called interrupt service routine, 
interrupt routine, and CPU handles these situations; so it is also called the interrupt 
handler – these are all different names for the same thing. So let me list these: device 
service routine or DSR; interrupt service routine or interrupt handler and so on and so 
forth; interrupt handler.  
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Now what is it essentially? Essentially this particular one is going to service the device 
and the service is just seeing that the data transfer takes place. That is, the device status 
checking is not there in this case; only because the device is ready it has interrupted the 
processor. If that is so what is there in the program? The program will only consist of the 
interrupt service program or the interrupt service routine will essentially consist of the 
data transfer part and anything else associated with it as I said earlier, counting of how 
many bytes and so on and so forth. That is, suppose 10 bytes have to be transferred as 
part of the interrupt service, then the CPU must take up this data transfer 10 times; it must 
carry out the data transfer assuming only 1 byte is transferred at a time. So the counting 
part and all those things are there.  
 



That will also become part of the interrupt service. so other than that, you can now see 
that the service part is nothing but moving these; so if you assume that we are dealing 
with an input device, the interrupt service routine essentially consists of this particular 
statement. 
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That is, input device – moving whatever is there in the device data buffer to CPU, of 
course, not over this line but over the data bus, the data part of the bus, which is not 
shown in this figure as such. So what has been shown here is only when the device, rather 
how the device, interrupts the CPU – that is all that is shown in this particular figure. The 
data bus will be connected to this, so that will be moved and the appropriate read write 
control signal will also be there. We will not bother about it; hope you follow that 
without any difficulty.  
 
The interrupt service or the interrupt routine is sometimes called just an interrupt 
program. It is nothing but the CPU executing a main routine and now the CPU executing 
something like a subroutine, which is now interrupt routine. So there is a context switch. 
Some very interesting things arise in this particular situation. First of all when you have 
many devices how will the CPU know which is the device which must be serviced? This 
is number one because if you have say 10 devices, you cannot have 10 interrupt inputs to 
the CPU. Especially in the case of microprocessor situation, the number of pins limits 
that. So you may have only 1 or 2 or may be 3, say maximum 5; we do not really have 
more than between 3 and 5. In the case of even 1, it should be possible. In the case there 
is only 1 interrupt input, CPU should still be able to identify which is the device which 
must be serviced because this may be a key board; and this may be say light pen input. So 
the kind of service needed for the keyboard is different from the kind that is needed for 
the light pen. So the programs are different, leave alone the other electrical interface, 
leave alone that program itself will be different. Now assuming that the devices there can 
be any number, all put a request on a single interrupt input.  



How will the CPU know what it is to do? We already discussed this earlier. First of all, 
the CPU will not allow itself to be interrupted till the end of that particular instruction 
cycle; that we know. Now at the end of that instruction cycle, it is going to generate the 
interrupt acknowledge. This particular signal comes at the end of that. Now one scheme 
can be that the interrupt acknowledge signal goes to one device and then to the other 
device and so on.  
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Now shown in this way, what does it mean? You may be having n devices and any one of 
these n devices may generate an interrupt signal. At the end of that instruction cycle, 
when the interrupt acknowledge signal is generated, this is the device which is going to 
get the interrupt acknowledge signal first. Suppose this is ready, we do not have to know 
when exactly this became ready. When the interrupt acknowledge signal comes, if this is 
found to be ready, this will respond and what is the response? It has to essentially identify 
itself; that is, it has to generate a code to the CPU, that is, we call that a vector, a code. 
The code essentially points to where its interrupt service program is. So let us say for the 
first device, interrupt service program is starting from location 100; for the second device 
it starts from location 200 and so on for third device from location 300. Essentially this 
device must say my service program starts from location 100. So it has to send a code, 
which the CPU will make use of and link it to start address 100 and this second device 
will have to generate a code, and then, the CPU, will understand from that that it will 
have to start the service program from 200 and so on and so forth.  
 
For instance the simplest thing is this device itself can put that address 100, which can 
go; this device can itself put 200 in response to the interrupt acknowledge. See, after all, 
an instruction cycle consists of many states. Now it is possible that we will just say this is 
one instruction cycle; it is possible because, after all, this is time axis. It is possible that 
device 1 or device 2 generated interrupt at this point in the instruction cycle and for 
device 1, we have just considered two devices.  
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So we will continue and device 1 has generated an interrupt at this instant. Now this is an 
interrupt time, at which device 2 generated the interrupt, and this is the time in which 
device 1 generated the interrupt. So in either case, both had generated the interrupt; the 
interrupt input has come to the CPU and CPU responds with an interrupt acknowledge 
only at the end of the instruction cycle. Now by the time we reach the end of the 
instruction cycle, we see that device 1 is ready; that is why it has interrupted.  
 
And so now you can see even though device 2 has generated an interrupt earlier, when 
the CPU responds, it sees device 1 as ready. I just said device 1; I think you all followed 
– this is device 1 and this device 2. Now both are ready and since CPU sees that this is 
ready, this I/O device will generate over the data bus; actually it will send the code and 
identifies itself as its service program is from such and such and the service program is all 
essentially moving the data. So the service program for this, starting from 100, will be 
executed at the end of it. 
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At the end of the service, device 2 will still be waiting because that is also ready and it 
not been served. So at the end of that device 2 will be served. Now this is one simple way 
of looking at it. We will not go into certain issues in this I said at the end of device 1 
service there is device 2 and I also said it is not really necessary. We will talk about it; we 
will come to that a little later.  
 
Why is it that even though device 2 generated the interrupt signal earlier than device 1, 
device 1 was serviced first? It is mainly because this is the route by which the interrupt 
acknowledge signal goes. In other words, this is nothing but hard wiring of the priority of 
the devices. This is nothing but defining the priority of this device by hardwiring because 
it has been hardwired this way.  
 
The acknowledge first goes to this point; electrically this goes. So we also say that device 
1 is electrically closer; because of the hardwiring device 1 is electrically closer to CPU. I 
hope you understand why we say electrically closer. It is because device 1 may be 
physically farthest. For instance, if the interrupt acknowledge first goes to device 2 and 
then it comes to device 1, then we would say device 2 is electrically closer, though 
physically it may be further away. So the priority of device 1 service is high mainly 
because we have achieved it by hardwiring the acknowledgement. 
 
 
 
 
 
 
 
 
 



Now by this hard wiring, we see that device 1 is electrically closer to CPU and that is the 
reason device 1 was serviced first. We have already seen what the service is; service is 
essentially data buffer, moving the contents to the data buffer. Now this particular 
arrangement is also called a DAISY chaining; so it is something like chaining all the 
devices.  
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So take the signal through one device and then through another device and through 
another device, creating a chain; this particular thing is also called a DAISY chaining. So 
this is one way in which the priority can be defined. Now are there other ways of defining 
the priority? Obviously the moment we say through hardwiring, we define the priority; 
that means there must be another one by which, through software, we may be able to 
define the priority.  
 
How is it? Now let us go back to the original situation itself. Device 2 generated interrupt 
and then device 1 generated interrupt; at the end of the instruction cycle when the 
interrupt acknowledge goes to device I mean is generated by the CPU, it goes to device 1 
first and so device 1 service is taken up. We had assumed a simple one-line interrupt 
service program; now assuming that this consists of say some 5 instructions, suppose the 
device service routine is the interrupt service routine specifically in this case we can call 
it as interrupt service routine. Suppose this consists of 5 instructions. 
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That means essentially 5 instruction cycles will be gone through. Now what did we say 
earlier? We said that whenever there is an interrupt at the end of the instruction cycle, the 
interrupt acknowledge will be generated. Now device 1 service we say consists of 5 
instructions or 5 instruction cycles. Now the moment the first instruction cycle of the 
interrupt service for device 1 is taken up, if this interrupt is still there, what will happen? 
After all from CPU’s point of view, it will respond whenever there is an interrupt, and in 
this particular case device 1’s request had already been responded and it is servicing, that 
is, it is executing a program. Whether it is a main program or an interrupt service 
program, it is just a program and the interrupt acknowledge has gone to device 1 and the 
service program has been started. So it will be meaningful to assume that this device 
itself cannot interrupt itself again.  
 
So this interrupt say input would have been cleared. Now this interrupt signal will not be 
there and CPU will see this interrupt signal. The device 1 service has started, and it is 
going through the first instruction cycle, and at that instant, it is meaningful to assume 
that this interrupt input will not be there. Now this interrupt input will be there. CPU, 
after it finishes 1 instruction cycle for device 1 service, will be interrupted because device 
2 shows the interrupt input, that is, it has flagged the interrupt input. What happens? The 
service of the device has been interrupted; mainly it is just a program. As long as the 
instruction cycle is completed, it can be interrupted. So that can be interrupted and with 
device 2 – what happens to our earlier priority definition? We now have to talk about two 
things: one is what is the priority before the interrupt and what is the priority while 
interrupt program is not there, that is, as hardwired priority that is as in this and then what 
is the priority in service. So we have to talk about the two priorities, hardwired priorities. 
Of course, there is a way in which this problem can be circumvented; anyway let us make 
a note of this also.  
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In service priority, it is already a device which is being serviced. What is its priority? 
Now if you want device 1’s service to be completed, what did we assume? We assumed 
that device 1’s service involves 5 instructions and so 5 instruction cycles. Now 
throughout these 5 instruction cycles, if the interrupt itself is disabled, then device 1 
service can be completed. That would be needed some times. So we have to also talk 
about enabling or disabling the interrupt structure.  
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That is, the CPU should not respond; I mean the CPU enables to respond and in this case 
of disabling interrupt structure, the CPU is disabled from responding to the interrupt. 



Actually there are instructions called enable interrupt and disable interrupt. By executing 
these enable interrupt and disable interrupt instructions, the structure can be enabled to 
respond to an interrupt input or disabled. Now let us go back to our original problem: 
device 2 and device 1 both interrupt at the end of an instruction cycle. The interrupt 
acknowledge is generated and device 1 interrupt service is taken up. The very first 
instructions in device 1, if it were disable interrupt, then what will happen? No more 
interrupt will be accepted by the CPU and the very last instruction of device 1 interrupt 
service can be enable interrupt, in which case that instruction will be completed and then 
only at the end of that instruction cycle only, the interrupt input will be honored. In this 
case we can complete the device 1 interrupt service and then respond to it.  
 
So enabling interrupt structure and disabling interrupt structure in the CPU is done by 
having the instruction; it is part of the instruction set of the CPU. By including these in 
the service program in the service routine, we can selectively enable and disable and then 
keep redefining or rather, in this particular case, maintain the priority. Now the same 
thing holds good. Suppose device 1 and device 2 generate interrupt at different times. Let 
us say only device 2 has interrupted and, to start with, device 1 has not interrupted; then 
device 2 service will be taken up, and if the interrupt has not been disabled, then at any 
time when device 1 interrupts, device 2 service will be interrupted. Device 1 will be taken 
up mainly because of the hardwired priority. So the interrupt acknowledge will be 
generated. Now even though by hard wiring we have assumed that device 1 interrupt will 
be taken up first, suppose during device 2 service the interrupt structure has been 
disabled, by executing a disable interrupt instruction as part of the device 2 service 
program, even though device 1 has a higher priority because the structure is disabled, 
during service we can keep redefining the priority and there are many other ways also by 
having a separate priority arbitrator and so on and so forth.  
 
That is, through software, we can keep redefining the priority. That is why we say we 
have a hardwired priority and then we have in-service priority and this particular thing 
can be changed. What can be changed is what can be done through software. The one 
which is hardwired can never be changed. Now there are many ways – we assumed only 
one interrupt input. Suppose we have say two or three interrupt inputs. Then, given an 
interrupt line, we can talk about the priority and given these interrupts, say we call these 
interrupt 1, interrupt 2, and interrupt 3, suppose there are 3, we would be connecting the 
devices to these. 
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Now we can talk about a two-dimensional priority structure. Generally what happens is 
the CPU itself will define the priority among these interrupt 1, 2 and 3. The CPU will 
define a priority and then, by this external arrangement, on the given line by hardwiring 
and DAISY chaining and what not, we can redefine the priority. So you have a two-
dimensional priority. That also will be taken into account during the service. Earlier I had 
also said that it is meaningful not to disable some aspect of the interrupt structure. There 
may be some crucial inputs, which you should never disable; for instance in case power 
failure is indicated. Suppose you are able to disable the interrupt, then before we can re-
enable, the power may fail and we would lose everything that is in the semiconductor 
memory, volatile memory.  
 
So generally what happens is certain inputs will be accorded the highest priority; not only 
highest priority but also that it will not be masked; you cannot disable them. The term 
that is used for that is by disable or enable, we can selectively enable; that is, we will 
selectively enable certain inputs and we will selectively disable certain inputs. So that 
particular thing by selection is called masking. We talk about mask able interrupts and 
non-mask able interrupts. For instance, crucial inputs such as power failure will all come 
under non-mask able interrupts.  
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It means, suppose interrupt 1, interrupt 2 and interrupt 3 have a priority such that 
interrupt 1 is the highest priority. Generally the highest one will be given the non-mask 
able character so that it will never be disabled. Suppose we have three different priorities 
like this. Then we may be selectively enabling this or disabling this; enabling this or 
disabling this whichever way we want; that is, at any time, I can selectively enable 
interrupt 1 and interrupt 3 alone; interrupt 2 is disabled, or any other combination: 
interrupt 1 is enabled, interrupt 2 is also enabled; interrupt 3 is disabled. So this is done 
obviously to the CPU; we have to send an appropriate command and that command word 
will have the appropriates bits like masking or non-masking. So it is nothing but what we 
knew as configuring. Earlier remember, we were talking in terms of peripherals, we were 
talking about configuring and data transferring – that is configuration phase.  
 
So selectively masking any interrupt; we just cannot do anything. Whenever the input 
comes on non-mask able interrupt, it will be responded to by the CPU. Sometimes it may 
be so critical that even the interrupt instruction cycle may not be completed, but anyway 
if it is called an interrupt, the instruction cycle must be completed. Now during 
configuration phase, we may selectively mask, that is, selectively enable and disable 
certain interrupts; non-mask able cannot be touched at all. 
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Generally these non-mask able interrupts are used for very critical things such as power 
failure. Some other systems have failure aspects. This is about what we need to see about 
interrupt in general. However while talking about the interrupt and the interrupt handler, 
that is, the service routine; I would like to touch upon a few other aspects also, which are 
related to it. Essentially interrupt is carried out through a context switch. We saw that a 
device is interrupting. Now it is also possible that interrupt can be achieved by executing 
an instruction; it may sound a little strange because there are some interrupt instructions. 
So the main routine is executed and then some situation arises and the CPU cannot 
proceed further. Now that situation may be because a device is interrupting or because 
the CPU has come across an instruction, which is called an interrupt instruction.  
 
There are some software; we call these as software interrupts, though all the time we have 
been talking about an interrupt and it is through hardware and so on, there are software 
interrupts too. Similar situations may arise – like a call to a subroutine; it is somewhat 
like this. A call to a subroutine or the main routine is interrupted and the subroutine is 
taken up. Similarly in the software interrupt also, execution of software is an appropriate 
instruction; then some situation may arise. For instance, there is an instruction which is 
not part of this particular implementation of the processor, that is, an instruction has been 
reserved for future processor, but not for this version. Suppose the instruction comes, 
then it is really an illegal instruction. The processor cannot proceed or divide by 0; if it 
comes the processor cannot proceed. So the processor may get interrupted and we say in 
general the flag, such as an exception flag, is raised. That is, an exception has arisen and 
the processor has to respond to that exception; it is similar to the interrupt.   
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Now if we know precisely what the exceptions are, we can also store the routines or 
handlers for these exceptions. So the interrupt handler and exception handler essentially 
is something which the processor cannot proceed with, and instead of going rule by rule, 
now an exception has come. The processor has to respond to that. There are two types of 
exceptions: one is processor exception; the other one is in fact called a programmed 
exception.  
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This programmed exception is similar to the software interrupt I was mentioning, which 
is essentially caused through software.  



For instance, a software interrupt programmed exception is like this. Now let us see what 
the processor exception is. That is, the processor cannot proceed further because the 
programmed exception is given specifically through some instruction or other. The 
moment we say software, it is something which is acceptable by the processor, that is, 
essentially some instruction. What is this processor exception? We will see this in detail. 
In this, the response by the processor will be similar to what it would otherwise be in the 
case of interrupt; that is why we are taking it up. There are essentially three types – one is 
a FAULT.  
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FAULT is the processor exception. Now what is the FAULT? We have come across this 
FAULT, a segment FAULT; what is it? The page is not accessible to the processor; the 
segment is not accessible to the processor because mainly the memory is not holding 
what the CPU wants. Now what is the situation? What is the remedy for that? The CPU 
has to bring in the new page or bring in the new segment, and then after it has brought in 
whatever the CPU requires, that CPU can continue with the same instruction, meaning an 
instruction has come across an address and that particular address, the contents of that 
address, are not available in the memory. So we call that a page FAULTS. The processor 
comes across a page FAULT; then we say an exception is raised and this is a FAULT 
exception. So a page FAULT handler – it is a program that is run and that sees to it that it 
swaps out one of the pages and swaps in a new page that is required, and at the end of it, 
the processor can resume from where it left off. So we say after servicing for whatever 
fault, the CPU resumes with that instruction; we will say resumes with the instruction 
which caused the fault. Now there is another type of exception called a TRAP. Now why 
are we talking about this?  
 
 
 



They are similar interrupt handlers; a fault handler is coming under exception and a trap 
handler is another exception; that is, the CPU cannot proceed; it is getting disturbed or 
interrupted. But it is not the same as interrupt; there are different names for it. What is a 
TRAP? When we say power failure causes the CPU to be trapped, meaning the AC 
power is dipping and DC power will go off in another few milliseconds, before that, a 
few instructions will be executed and those few instructions will possibly be for trap 
handling. It means to bring it to a satisfactory or rather, bring it to a logical portion; that 
is, end of that current instruction, and stop. May be a few instructions will be necessary, 
and then, stop, save everything so that later on, when the power resumes, the service can 
be restarted with the next instruction. In the case of FAULT, after servicing the CPU 
resumes with the instruction which caused the FAULT.  
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Now in the case of TRAP, after servicing, CPU resumes with the next instruction because 
a TRAP is a situation with which the CPU cannot proceed any further. So it will be 
brought as it is a legal instruction, but because of power failure and something like that it 
cannot proceed. So it will complete that instruction and the CPU resumes with the next 
instruction – this is important.  
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Now here we can emphasize – here it continues with the same instruction, which causes 
FAULT; and here, it is with the next instruction. So you can see there are minor 
differences; there is another type called ABORT.  
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That is, a situation arises and the CPU cannot proceed any further. So it has to ABORT; 
in other words the CPU stops. An abort handler causes the CPU to stop and it cannot 
proceed any further. That is, it is not like a FAULT, where some corrective action can be 
taken and we can proceed with the next instruction. It is not like a trap where the current 
instruction can be executed and then we can proceed with the next instruction.  



Here the CPU cannot proceed any further because of this situation; that is, there is no 
correction that is possible. So we have a FAULT handler; we have a TRAP handler; and 
we have an ABORT handler and interrupt handler. These in fact are somewhat related. In 
both these cases the CPU stops and takes up some other service. Now specifically we 
were talking about device interrupt service here; these are all internal; the processor itself 
faces this. In addition to this, as part of the program, by including appropriate instruction 
in the software, we can also cause something similar to interrupt. But all these are 
internal to the processor, unlike this, in which the external device is involved. So in the 
next lecture, we will briefly take a look at the DMA and then proceed to trace the 
evolution of I/O over these few years.  
 


