
Computer Architecture
Prof. Madhu Mutyam

Department of Computer Science and Engineering
Indian Institute of Technology, Madras.

Lecture -01
Introduction

Welcome to NPTEL’s MOOC on computer architecture. So, as part of this module, I am

going to discuss the overview of computer architecture course and we define what is

Computer Architecture and so what is the syllabus we cover and what are the reference books

and so on. So, before defining the computer architecture, I would like to explain the layered

view of computer design.

(Refer Slide Time: 00:40)

If you see a computer design in a layered view, there are several layers starting from the

application layer and all the way up to transistor layer. And each of these layers specifies set

of operations and for example, if you consider application layer. So, talks about the type of

applications that run on a computer. In general, a computer can run any application and so on,

but in reality when we design a computer, we design a computer for specific purposes. For

example, if we consider super computer. Our target applications for super computer are high

end applications, which are the weather modeling, molecular simulations and etcetera.

On the other hand, if we consider a desktop computer our target applications are email, word

processing and etcetera. So, depending on the type of applications for which we want to

design a computer, we need to define our requirements and we tune our designs for

optimizing those requirements. After this application layer, the next layer is algorithmic layer.

So, in the algorithmic layer typically once the application is defined.

Now, we need to see, what are the characteristics of the applications. Such as what type of

data this application takes, what type of operations we can perform, how the operations

sequencing happen and is there any implicit parallelism among the operations, we have to

define all these things. And once we define these things, the next step is to come with the step

by step procedure to compute the outputs for the application. So once the algorithmic layer is

completed, effectively like, we have an algorithm the next one is we need to translate this

algorithm into a high level programming language.

Effectively, we code this algorithm into a high level programming language, such as C, C++,

Java or Fortran. Once we code a high level program, the next step is, we need to run this high

level program on the computer. But to run that we need operating system layer, which

effectively specifies the system software which include operating systems, compilers, linkers,

assemblers and so on. So, these are the actual routines which help executing our high level

program on the real hardware.

And the next comes the architectural layer. So, this architectural layer specifically describes

the instruction set architecture. This instruction set architecture is nothing but the set of the

instructions, instruction formats, operands, addressing modes, I/O-mechanisms, memory

model and all these things. And once we have an ISA, our system software level, especially

the complier, converts the program into the machine understandable form by using this ISA.

Through this architectural level, all the other layers are actually corresponds to hardware and

all the other layers above architectural layer correspond to the software. In other words the

architectural layer is the interface between the software and hardware. Once ISA is defined,

our next task is to have the functional units which execute the instruction specified by ISA

and that comes in microarchitectural layer. In other words microarchitecture or also called as

organization, deals with the functional units and the interconnection among these functional

units to realize the ISA specified at the architectural layer.

And once the microarchitectural layer is defined, the next one is the logic layer which

actually consists of digital circuits both combinational and sequential circuits. And the

components in the logic layer are the flip flops and gates. Using these flip flops and gates, we

build digital circuits both combinational sequential circuits. And the last layer is the transistor

layer which actually consists of transistors, resistors, capacitors and all these are used to build

the gates and the transistors.

So, effectively, if you see this, the layered view of computer design, except the application

layer, all other layers implement the layer above. For example, a transistor layer implements

whatever is available at the logic layer. And the logic layer implements whatever is defined at

the microarchitectural layer. And microarchitectural layer defines, implements, whatever is

there in architectural layer and so on.

So, because our course is on computer architecture, we mainly focus on two layers - those are

architectural layer and microarchitectural layer. So, having discussed this layered view of

computer design, now we will define what is computer architecture.

(Refer Slide Time: 06:48)

The computer architecture defines mainly the functionality or functional requirements of a

computer that we want to design, which is specified by the instruction set architecture. Next

one is the organization and also called as the microarchitecture, which is nothing but the

interconnection of functional units to realize ISA and finally, the efficient implementation.

How do we define one implementation is efficient?

So, to do that first of all we need to see what are the classes of computers because depending

on the type of the class of computer our efficiency matrix can be defined. If you see different

classes of computers, we have personal mobile devices, desktop computers, servers and

embedded computers. And each of these computers have different functional requirements

and they need to be designed for optimizing different metrics and so on.

If we consider, for instance personal mobile devices, here the main important thing is

responsiveness and predictiveness, and because these personal mobile devices are operated

using battery, so our main design requirement is energy efficiency. When we want to design a

personal mobile device, we have to design in such a way that the energy efficiency is

improved. On the other hand, if we consider servers, because the servers are used by multiple

users simultaneously to execute their programs and so on.

So, here the requirements, functional requirements, are availability and scalability. And

because these are multiple users are using, so when we design a server type of system, we

have to design the system to optimize the throughput and similarly, for the other type of

computers.

(Refer Slide Time: 08:50)

The Flynn’s classification of computer architectures, there are four groups of computer

architectures starting with SISD, single instruction and single data stream. So, we have

instructions are taken from a single instruction stream and then these instructions are operated

on single data stream. And here typically we exploit the instruction level parallelism among

the instructions of the program.

And the example processors are computers belong to these class of computer architecture are

uniprocessor system. The next class of computer architecture is SIMD, single instruction and

multiple data. Here, we have instruction from a single instruction stream, but these

instructions are operated on multiple data streams. Effectively, we can exploit the parallelism

available at the data level. And the example systems that belong to this class of computer

architecture are vector architectures, array processors, GPUs, multimedia extensions and so

on.

And the third class of computer architecture is MISD, multiple instructions and single data

stream, but actually this class of computer architecture is defined just for the completeness

sake, but there is no commercially viable implementation of systems belonging to this

particular class. And the last class of computer architecture is MIMD, multiple instructions

and multiple data. Here instructions are taken from multiple instruction streams and these can

be operated on multiple data streams simultaneously.

So, effectively we can exploit parallelism available at thread level. And example systems that

belong to this class of computer architecture are multicore processors.

(Refer Slide Time: 11:01)

Having defined the computer architecture and discussed the various classes of computer

architectures and so on, now we are going to discuss the course objectives. By the way, in this

course we mainly focus on two classes of computer architectures. One is SISD, single

instruction single data stream and the second one is MIMD, multiple instruction and multiple

data streams. Effectively we will consider a unicore processor systems as well as multicore

processor systems and discuss the internals in detail.

So, main objectives of the course are three fold. We discuss mainly, the fundamentals of

computer architecture, because understanding the fundamentals of computer architecture

helps in building efficient computer systems and so on. And next we will discuss in detail,

understanding of the Superscalar processor design, because if you consider any of the current

day multicore processors, each of the individual cores are internally designed as Superscalar

processors.

Here, in this part we discuss how out-of-order execution happens and how dynamic execution

happens and so on. And finally, the third objective of the course is to provide an overview on

multicore processors. Especially, issues related to multi-core processors such as the cache

coherency, synchronization and memory consistency.

(Refer Slide Time: 12:33)

This course is a twenty hour lecture course and we consider the syllabus for this course like

this. One week of lectures on instruction set principles, two weeks of lectures on memory

hierarchy designs, specifically concentrating on cache memory design and DRAM based

memory design. And one week of lectures on understanding the fundamentals of pipelining,

issues related to pipelining such as pipeline hazards and how to resolve those pipeline

hazards. And two weeks of lectures on exploiting instruction level parallelism available in

SISD type of computer architectures.

And in this the section we also discuss the out-of-order execution, Superscalar processors,

dynamic scheduling and all the other things. And finally, the last two weeks of the course, we

discuss exploiting thread level parallelism, especially discussing things related to multicore

architecture.

(Refer Slide Time: 13:44)

So, for this course we use these three reference books “Computer architecture - A

quantitative approach by Hennessy and Patterson” and “Modern processor fundamentals of

superscalar processors”. Especially this is for understanding the internals of superscalar

processors and this is by “Shen and Lipasti”. And the third one is especially for DRAM based

memory based design, we consider “Memory systems” book by “Jacobs, Spencer’s and

Wang”. So, with this brief overview, I would like to stop this module.

Thank you.

