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Pipeline Hazards (part 1)

So, in the last module we discussed fundamentals of pipelining. And also we mentioned that

in an ideal scenario with a k stage pipeline we can get a k fold increase in the performance,

but in reality, because of several constrains, the performance through a k stage pipeline may

not be a k fold. So, in this module we are going to discuss set of pipeline hazards and that

actually limit the performance improvement that we can get through pipelining.
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The pipeline hazards are caused because of organization of the pipelining as well as other

inter-instruction dependencies. And these hazards can be classified as three categories. The

first one is a structural hazard, second one is the data hazard and the third one is a control

hazard.  And  the  structural  hazard  is  caused  mainly  because  of  the  lack  of  resources  or

because of resource conflicts and whereas data hazards happen because of the instruction

dependencies among the set of instructions that are processed by the pipeline. 

And the control hazards are mainly because of the control instructions that are there in the

program. And these control instructions are typically branches and jumps. Because of these

hazards our normal flow of execution through the pipeline will be disturbed and as a result



there will be some stalls or bubbles created in the pipeline and as the stalls are created in the

pipeline that is going to degrade the overall performance. So, effectively the speedup that we

achieve with pipelining by considering this pipeline hazards is,

                   SpeedupPipeline=
CPI Non− pipelined

CPI Ideal+Pipeline stallcycles per instruction

And in an ideal scenario our CPI will be almost equal to 1. So, we can represent this equation

as,

                      SpeedupPipeline=
CPI Non−pipelined

1+Pipeline stall cycles per instruction

And if we assume that all the instructions in our program will go through all the stages of the

pipeline, then CPI of non pipelined design can be expressed as the number of pipeline stages.

So, effectively the speedup that we achieve with pipelining can be expressed as,

                      SpeedupPipeline=
Pipeline Depth

1+Pipeline stall cycles per instruction

So,  effectively  if  more  number  of  stalls  are  there  then  the  speedup  will  be  degraded

significantly. So, if you want to come up with an efficient pipeline design, we have to ensure

that the number of pipeline stall cycles is minimized. If you reduce that the pipeline stall

cycles per instruction then automatically we can improve the speedup. If we assume that the

number of pipeline stall cycles per instruction is 0, then our speedup that we achieve with

pipelining is equal to pipeline depth, that is nothing but, if a k stage pipeline is considered

then we will get the k fold increase in the speedup, but that will happen only if pipeline stall

cycles become 0, but in reality because of the structural data and control hazards our pipeline

stall cycles per instruction will not be 0.



(Refer Slide Time: 04:00)

So, first we will look at the structural hazards and as we mentioned earlier. The structural

hazards are mainly because of resource conflicts. So, we will consider a simple scenario for

example, if you have a pipeline design, where all the stages except the execute stage is taking

one pipeline cycle time. And in our execute stage we have set of functional units. And for

example, if our floating point multiplier unit is not pipelined and it is taking the total time

equal to for example, ten times the pipeline cycle time.

Then effectively if  any floating point  multiplication instruction is  processing through the

pipelining. So, once it enters the execute stage this instruction will take ten pipeline cycles

time to compute that. Then effectively this floating point multiplier will not be available for

any  subsequent  floating  point  multiplication  instruction.  And  also  if  the  output  of  this

pipeline,  if  the  output  of  this  floating  point  multiplication,  is  required  for  subsequent

instructions those instructions also cannot be executed.

So,  the  second part  is  called  as  a  data  hazard,  but  the  non availability  of  floating  point

multiplier unit for subsequent instructions is called as structural hazard because our floating

point multiplier is not pipelined and which is taking ten pipeline cycles time. So, effectively

this unit is busy for the next ten units of time. And as a result, none of the other floating point

multiply instructions can use this, the functional unit. And as a result we will have structural

hazard.



This is a scenario where if our functional unit is not pipelined, but there are other scenarios

also. Such as like, if our numbers of functional units are not enough to perform the operations

then also we will get a structural hazard. For example, we have a unified cache memory and

assume that this unified cache memory has a single port for read operations. So, now once

you have a single ported unified cache and when we are performing a read operation for an

instruction from this unified cache, we cannot use this cache for data read operation.

So, as a result there is a resource conflict and that also creates a structural hazard. So, this is

an example where we consider unified cache. So, the meaning of unified cache is like this

cache can store both the instructions as well as the data. And also we consider this unified

cache  as  a  single  port.  So,  now  you  can  see  here  in  the  fourth  cycle,  we  are  actually

performing a load operation through this unified cache. So, because the first instructions are

load instructions which wants to load the data from the unified cache, that is effectively CC4,

cycle four, we are going to use this the unified cache for data read operation, but while we are

performing that, then we cannot use this cache for fetching the fourth instruction that is an R

instruction.

So, effectively there is a stall our fourth instruction will be delayed by one cycle and in the

cycle five the fetch operation for this fourth instruction will  start.  And that unnecessarily

creates a bubble and that degrades the performance. In order to reduce the structural hazards,

we can encourage the number of functional units or we can pipeline a functional unit.
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So, next we will look at the data hazard. As I mentioned earlier the data hazard is because of

the dependency between the instructions. So, for example, consider a scenario where we have

five different instructions that we want to execute through pipelining. And we can see here

the  first  instruction  a  add  instruction  which  produces  the  result  onto  a  resistor  R1  and

subsequent instructions such as subtract instruction,  AND instruction,  OR instruction and

XOR instructions require the output from this register R1 effectively.

All  this  four  subsequent  instructions  are  requiring  the  output  generated  by  this  add

instruction. So, in other words, unless the add instruction produces the value into register R1,

this  four  subsequent  instructions  cannot  execute.  And  that  is  actually  creates  a  data

dependency between these instructions. And as a result our subsequent instructions cannot

proceed further in the pipeline unless the add instruction is completed.

So, that is what is shown in a pictorially in this foil. So, here the register, we are writing to a

register in a register file in clock cycle five, but that is required in clock cycle three for

subtract instruction, clock cycle four for AND instruction, clock cycle five for OR instruction

and clock cycle six for XOR, but because the value will be written at the end of the fifth cycle

or half of the first half of the fifth cycle. So, as a result there would not be any problem for

OR instruction as well as XOR instruction.

We can supply the data for these two instructions, but for subtract and the AND instructions.

So, we have to come up with other mechanisms to minimize the penalties associated with this

data dependency. Otherwise, we have to stall the sub and AND instruction. We can minimize

the  penalty  associated  with  the  data  hazards  by  forwarding  the  required  operands  to

subsequent instructions. That is called as operand forwarding.
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So, now you can see here, we know that, though we are going to read R1 in cycle three for

subtract instruction, but actual value is given to functional unit or ALU only in cycle four. So,

as  a  result,  even  without  reading  the  value  from  the  register  as  soon  as  the  previous

instruction,  that  is  add  instruction,  computes  the,  performs  the  add  operation  from  this

temporary register associated with the ALU unit or the pipeline register associated with ALU

functional  unit,  can  forward  the  computed  value  directly  to  the  ALU  input  of  subtract

operation.

So, effectively the output from the adder is forwarded to the input of subtract functional unit.

So, we are forwarding this operand from the previous functional unit to next functional unit.

As a result, we do not have to worry whether read operation is performed for R1 in cycle

three  or  not.  So,  once  we forward  this,  our  subtract  operation  can  proceed  without  any

problem. So, as a result, subtract operation does not require any stall. And similarly, for the

AND instruction because AND instruction requires R1 at cycle five. As I mentioned earlier,

by the time the functional unit is going to execute, if we supply the value then there would

not be any problem.

So, as a result, we do not have to read the value in the previous cycle to be supplied to the

functional unit and we can just supply the data as and when the functional unit is requiring.

So,  the functional  unit  is  requiring value  in  cycle  five for  AND instruction.  So,  we just



forward the value of R1, which is not yet written to the register, but it is still there in the

pipeline register associated with the stage between memory access as well as write back.

So, this pipeline register is going to supply the value of R1 and that will be forwarded to the

input of the AND function unit. So, as a result AND instruction also will be executed without

any stall. And similarly, the OR instruction, by the time OR is requiring the data a register

read. So, already the value is written to the register in the fifth cycle for ADD instruction. So,

here we can clearly see the first  half of the cycle five,  we are writing the content to the

register file. And the second half of the cycle we are going to read from that particular thing.

So, we can just forward that and then as a result OR can be performed. Even otherwise also

we can forward this value directly to the ALU unit,  but effectively by using this operand

forwarding we can eliminate or we can minimize the pipeline stalls that occur because of data

dependency.

(Refer Slide Time: 13:46)

But this operand forwarding can also happen for stores. See in the case of stores, we can see

here in this example. So, we have an ADD instruction which is supplying, which is producing

the output in register R1 and after the ADD instruction we have a load instruction and which

takes this R1 as the source to calculate the effective address in the cache memory. And we

will  go to the cache memory and get the data  stored in the location and write that onto

register R4 and finally, we store this value that is stored in register R4 to some other memory

location in the cache.



So, to do that effectively, load cannot perform unless R1 is produced. And similarly, store

cannot  start  its  execution  unless  load  is  completed.  So,  effectively  there  is  dependency

between these three instructions.  So,  now using this  operand forwarding concept  that  we

discussed in the previous foil, we can forward R1 value to load instruction that is from the

output of ALU will be given to input of ALU of load instruction.

So, that there is forwarding you do not have to wait for this actual write back for R1 that

happens  only  in  cycle  five,  but  by  forwarding  this  value  from  the  output  of  the  ALU

associated with this add instruction, which happens in third cycle. And we just forward that to

the ALU unit in the fourth cycle. So, that the load computes its effective address by the end of

fourth cycle our effective address is calculated. Now, we have to go to the memory or the

cache memory and then we read the value that is located in that particular address specified

by this effective address.

So, that will happen at the end of fifth cycle, for load instruction. At the end of fifth cycle the

load instruction reads the value from the cache memory or data memory and by that time

actually this store instruction requires this data to be written to the memory. So, we already

know that store instruction requires R1 value as well as R4. R1 is already available through

operand  forwarding  from the  first  instruction,  ADD instruction.  So,  as  a  result  like  this

pipeline register which is between memory access and the write back stage they will supply

R4 content to the functional unit associated with the store instruction and in the fifth cycle.

In the sixth cycle, so load is actually supplying the read value, whatever the value it read

from the data memory to the store instruction. So, effectively at the end of fourth cycle, we

get R1 value forwarded to operand forwarding. At the end of fifth cycle we forward the load

value that is obtained for this load instruction to the store. So, by the end of sixth cycle we

perform store operation successfully.

So, effectively we are not incurring any stall for this store instruction. So, in summary data

hazards also create penalty in the pipeline performance. And to minimize that we exploit

operand forwarding concept and this operand forwarding concept can be applied for ALU

outputs as well as the load values that we read from the memory. So, using this operand

forwarding concept we can minimize the data hazards penalty, but there are some scenarios

where data hazards cannot be eliminated or the stalls incurred because of data hazards cannot

be eliminated.
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For example, here we can see subtract operation requires R1, but R1 is produced by the load

instruction, but we know that load instruction produces the value from or load instruction

reads the value from the data memory only at the end of fourth cycle in a five stage pipeline,

but our subtract operation is issued one cycle delay with respect to the load. So, effectively

R1 is required for subtract operation at least by the cycle four, the start of cycle four, but the

load is supplying this memory read operation only at the end of cycle four. So, effectively we

incur one cycle penalty because the subtract operation cannot be proceeded unless the value

is read from the memory for the previous load instruction.

So, as a result of this stall cannot be eliminated in our pipelining design. Even when we use

operand forwarding because we cannot exploit operand forwarding in this particular example

especially for subtract operation, but for all other operations that is AND and OR. So, there is

no problem with the R1 forwarding because like R1 is available at the end of fourth cycle and

AND and OR requires these values only at the start of fifth cycle. So, as a result we can

peacefully forward this R1 value for these two instructions, but for the subtract instruction we

cannot do.

So,  as  a  result  there are  some scenarios  where we cannot  eliminate  these stalls  and that

actually degrade the performance. So, in other words, whenever we have set of instructions to

be executed through pipeline, we have to see which instructions can be benefitted from this

operand  forwarding.  And if  there  are  some instructions  which  can  benefit  from operand



forwarding  we have  to  apply  this  operand  forwarding  technique  and  minimize  the  stalls

associated with these dependencies.  And in those cases where we cannot exploit  operand

forwarding concepts then we have to incur penalty associated with this data dependencies.

(Refer Slide Time: 20:04)

And finally, we will  consider that control hazards.  We know that the control hazards are

mainly because of the branch instructions; branch or jump instructions which are actually

alter  the  execution  of  the  normal  flow. So,  as  compared to  the  data  hazards  the  control

hazards are going to incur significant penalty. So, our overall performance can be degraded

significantly, if  you are  not  taking  care  of  this  control  hazards.  So,  because  the  control

hazards are occur mainly due to this branch instructions and jump instructions. And we know

that in our simple five stage pipeline a branch target address is computed at the end of second

stage, that is instruction decode stage.

Unless  we calculate  the  effective target  address,  we cannot  proceed with  our  subsequent

instruction fetch. And if we assume that branch is not going to take place and then we fetch

subsequent  instruction,  but  after  the  branch is  computed  we know that  our  prediction  is

wrong, then we have to flush and then we have to re-fetch the new instruction. So, that is

effectively, for example, if we see in this example the branch instruction is proceeded in this

order.

The first cycle we fetch the instruction and in the decode stage we identified that this is the

branch instruction and in the same cycle we are going to compute the target address, but



while we are doing all these things the normal scenario we can start fetching the subsequent

instruction to this previous instruction. So, we fetch the instruction, but at the end of this

stage  we identified  that  the control  is  jumped to a  different  location  not  in  the program

sequence order.

So, as a result we have to re-fetch the new instruction. So, as a result of this cycle is wasted.

In other  words,  this  one cycle  stall  is  incurred in our, the pipeline because of the target

address  is  not  known  at  the  start  of  the  second  cycle.  And  after  that  the  subsequent

instructions can be executed in a normal flow. So, effectively so, unless we know the target

address for the branch instruction,  we are not sure whether we have to proceed with the

subsequent instruction or we have to proceed with some other instruction which is located at

some other address.

So, that means like we need to find mechanism to effectively find or predict the target address

and minimize stalls associated with this control hazards. As I mentioned previously

                             SpeedupPipeline=
Pipelinedepth

1+Pipeline cycles per instruction

If you do not have any stalls because of structural hazard or data hazard and all our stalls are

mainly because of control hazards. So, effectively we will compute the number of stall cycles

that happen because of the branches.

                          
SpeedupPipeline=

Pipelinedepth
1+Pipelinestall cycles from branches

SpeedupPipeline=
Pipeline depth

1+Branch frequency∗Branch penalty

So, if we minimize the number of stall cycles from the branches then we can improve the

overall speed up with the pipelining concept. So, the pipeline stall cycles from branches can

be expressed as the product of branch frequency and the branch penalty. So, effectively, so in

order to minimize the penalty associated with the control hazards, we have to minimize the

penalty  associated  with  the  branches.  We  cannot  reduce  the  branch  frequency  in  an

application, but we can minimize the penalty associated with the branches. So, as part of next

module we are going to discuss set of techniques that minimizes the branch penalty and with

that I am concluding this module.

Thank you.


