
Artificial Intelligence: First Order Logic: Forward Chaining

Prof. Deepak Khemani

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Module – 03

Lecture - 05

Okay so we are in the process of generating proofs of first order logic and in particular we are
looking at this process of forward chaining. We started by looking at this rule called modified
modus ponens so let’s begin with that. Let’s define it formally. So what we are saying here is that if
we are given a formula alpha implies beta which is an implicit quantifier form. For the moment we
are working only with universally quantified statements and if you are given a formula delta, then
you can infer a formula let’s say gamma. So from this and this we infer gamma if one can find a
substitution theta such that alpha theta is equal to delta. In this notation what we are saying is that
we have applied the substitution theta to the formula alpha.

 (Refer Slide Time: 02:08)

So wherever the variables that are talked about in theta are present in alpha we have substituted
them with whatever the substitution specifies essentially. So if we can find a substitution theta such
that when we apply to alpha, the formula alpha theta becomes equal to this formula delta, then we
are in the position to apply modus ponens and what do we infer? We infer a formula gamma which
is obtained by applying the same substitution to beta. So this is theta applied to beta. In the first case
it is theta applied to alpha

 (Refer Slide Time: 03:00)

so this is the modified modus ponens rule. It actually combines two steps of first order logic, one is
the step of universal instantiation and the second is the step of modus ponens. It does everything in
one step but the thing is you have to find this theta on the way. Why is it called chaining? Because
let’s say you are given a fact alpha and you have a rule which let’s say is in the same form alpha
implies beta so now you can infer from this beta by applying modus ponens. And if you have a rule
of the form beta implies gamma then you can infer from this gamma. If you have a rule of the form
let’s say gamma implies delta, then you can infer delta essentially. So what are we doing we are in
some sense changing rules together and since we doing it in the forward direction that we are
moving from what is given to us, what the facts are and moving towards the conclusions, this
process is called forward chaining. And we will start looking at algorithms of forward chaining.
This theta unifies in this example alpha and delta so if you apply in this case of course delta may not
have had the variable in the example that we were looking at but it is also possible that delta may
also have had the variables. Theta is a substitution which unifies two or more formulae, in this case
there are two formulae. And when we say unifies we say make identical.

 (Refer Slide Time: 5:33)

And the algorithm which we look at today is the algorithm which will find this theta essentially. So
theta is called a unifier or a substitution. Basically a unifier and a substitution are the same things
essentially. So let’s first talk of what are we going to look for in this algorithm. We look for
something which is called the most general unifier often known as MGU. So let’s understand first
what do we mean by most general unifier. There is a more general than relation between formulae.
We say that alpha is more general than beta if there exists a substitution or a unifier theta such that
you apply theta to alpha and you get beta. So if you are taking a formula which has a universally
quantified variable and you are substituting something for that variable, you get the new formula
beta. Now obviously this alpha is more general than beta because it is talking about a universally
quantified variable. But in the example we were looking at we are substituting Man x with Man
Socrates so obviously Man x is more general than Man Socrates. And this is the formal definition of
more general than essentially.

So let’s look at an example to understand what are we talking about most general unifiers and why
are we interested in them essentially. So let us say that we are given two facts, the first fact is that
 (Refer Slide Time: 09:15)

So the first thing of course you should get used to is to read this statement as a universally
quantified statement. Both x and y are universally quantified variables which means implicitly there
is for all x for all y sitting out there. But since we are using the implicit quantifier form we are not
writing that actually. But you should read this as for all x for all y and Above and Below are two
variables which between us we will understand them to be the fact that Above x y means x is above
y and Below y x means y is below x. So this statement is essentially saying that for all x and for all
y if x is above y, it means y is below x.

 (Refer Slide Time: 10:16)

And the other statement that is given to us is let us say Above z floor. Again this is a universally
quantified statement, it is saying that everything is above the floor essentially. Now notice that we
we write floor we didn’t put a question mark so it’s not a variable, whereas with z we out a question
mark so it’s a variable. So that’s a convention that we will follow essentially. Now you can see that

here is a case where we can apply modus ponens and we can make an inference that Below floor
table.

 (Refer Slide Time: 11:16)

So we can infer, so given these two statements we can infer that the floor is below the table. How
do we infer that? We use a substitution theta which says that you must substitute, I will not write a
question mark here because it is clear that it’s a variable or let’s just put it for the sake of
consistency. I can substitute a constant table for x, I am allowed to do that because universal
instantiation says you can substitute anything. Likewise, I will substitute for z the word table and I
will substitute for y floor. So observe that this substitution is a unifier for these two formulae.

 (Refer Slide Time: 12:58)

so it unifies these formulae. The left side of the implication and the other statement that are given to

us. It means it makes them the same. Then we can apply the substitution to the right hand side
according to the modified modus ponens rule and for y we will substitute floor and for x we will
substitute table and you will infer that the floor is below the table. So it’s a perfectly valid inference
to make essentially.

But we could have chosen another substitution as well. So let me draw this with a different colour.
And this substitution says, let’s call it delta. We say that for x I will substitute z and for y i will
substitute floor. I am allowed to do that. Remember you are allowed to substitute a variable with
anything, you can even substitute with another variable. From this I will infer Below Floor z.

 (Refer Slide Time: 14:33)

Let’s just apply the modified modus ponens rule, apply this substitution theta and you have
produced a new inference which says that the floor is below everything else. So observe that the
second this thing is more general than this one.

 (Refer Slide Time: 15:10)

We have made two inferences, one of them is more general than the other essentially. Why is it nice
to make more general inferences because you can always apply the universal instantiation rule? I
can apply UI here and get the other. So it makes sense to make more general inferences than less
general ones.

 (Refer Slide Time: 15:45)

If I am told that everything is above the floor I can infer that the floor is below everything else. And
then I can infer that the floor is below the table, floor is below the fan, floor is below the chair. All
kinds of things I can do essentially. And you can see that Below floor everything is more general
than Below floor table because when I substitute the variable z with table we will get this new
formula. So the notion of more general than holds between these two formulae. So we generally
extend the notion of seeking more general inferences to most general inferences because essentially
we are saying that the more general the inference we can make the better for use essentially. So

make the most general inference that you can make and the substitution that allows you to make the
most general inference is called the most general unifier. So in this example this is the MGU.

 (Refer Slide Time: 17:02)

And we are interested in the algorithm which will allows us to find the most general unifier and this
algorithm is a very well-known algorithm, called the unification algorithm. Its kind of central to
theorem proving in general or logical reasoning in general. I have not defined what is the meaning
of most general but you know that given in any partial order or given any lattice when you have an
ordering which says that more general you can easily define what is most general and so on and so
forth. So something is most general if there is nothing which is more general in that so we will not
define it here essentially.

But I expect that you have accepted the notion of most general unifier and we are looking at an
algorithm for doing that. So only for this algorithm I want to also introduce this different way of
writing formulae which you can find in this book by Charniak and McDermott, the book is called
Artificial Intelligence and they use what is a LISP notation for writing the same logic formulae
essentially. It’s nice to use LISP notation because when you are writing programs they are easier to
process as compared to the mathematical notation FOL uses essentially. So in this LISP notation the
statement for all x Man x implies Mortal x. This has become our favourite statement will be
represented as follows and I will just use this illustration and you can work out what this LISP
notation works essentially.

So the first thing is that the connectives are not infix, that they are prefix, they come before the two
operands and secondly we don’t use any special symbols like the connective symbols we are using
or the quantifier symbols that we are using. We would write this formula as we use for all and then
we give the variable name, that is the quantified variable, then we start the scope of the quantifier,
in this example, that’s rest of the formula. Then we first write the connective and we use this
notation if since we are familiar with that so let me use lowercase. Then we begin a bracket to put
the left hand 0:49

So now I have to put the antecedent of the implication. Antecedent is a conjunct so I start by writing
the connective then my first argument to and is man x which also I write in this notation. So I put

the predicate symbol also inside the list. The first element in the list is always the important thing,
it’s either a predicate or function or a connective. That if you keep in mind you will remember. The
next argument to this is tall x, then I close the bracket to say that I finished with the and part. Now I
write the then part in the sentence. We don’t write then because it is enough to identify that, we
write mortal x and an appropriate number of brackets. That’s always the problem with the LISP
notation to figure out how many brackets to use.

 (Refer Slide Time: 22:05)

So let’s hope this is correct, maybe you need one more bracket. So only for this algorithm sake we
will use this notation but in practice of course if you are writing programs without any reasoning
then you will see that this notation is simpler to handle than the mathematical notation which
requires special treatment to different kinds of things. Here everything is a list essentially. So the
unification algorithm that we will look at, we will just look at tool essentially and in the implicit
quantifier form we simply throw away this part and we put a question mark wherever the case may
be. So that is simple. So we are only left with this if and formula essentially.

 (Refer Slide Time: 22:51)

So for the sake of this algorithm we will distinguish between variables, so we will assume that we
have a way of testing that it is a variable, constants and lists. So for the sake of unification,
remember what a unification is supposed to do is to take two formulas or two expressions and find
the substitution which will make them the equal. We don’t particularly care whether it is a logical
connective or it’s a predicate name or function name, it doesn’t really matter. Because we are now
really interested in making the two expressions equal essentially. And the only thing we are allowed
to do is we are allowed to substitute variables with something else. So that’s the only thing we are
allowed.

So if I had to let’s see we are given this fact that if and man Socrates tall Socrates, I don’t know
whether he was tall or not. Let’s assume he was tall. The goal is to unify this formula, sorry the left
hand side which is this. I am not given sentence, if I am given sentence that all tall men are mortals
which in implicate quantifier from the first sentence in blue to and the second sentence which is
Socrates is a tall man which is the sentence in the red. Then if I can unify the underlying cards,
them i can apply the modified modus ponens rules too, infer the right hand side essentially.

 (Refer Slide Time: 25:16)

Now as far as unification algorithm is concerned we just want to treat variables and constants and
lists separately. So I will just give an outline now and I hope you will work out the details. The
basic idea behind the algorithm is to scan left to right, the two formulae the two expressions which
are given to us, trying to unify piecewise in a recursive manner essentially. So of course at the high
level the algorithm will have something so the high level argument would be like this that we would
say UNIFY pat1 pat 2, so this is the notation I am following from Charniak and McDermott, pat1
and pat2 refer to the two expressions, or patterns that you are trying to make equal. The first thing
that you do is make a call to another. Ok so I should use the proper notations here. So if you have an
algorithm called UNIFY pat1 and pat2, we call another algorithm called SUBUNIFY with pat1,
pat2 and an empty list or an empty set if you would like to say. We include a third argument and you
must be familiar with this style of writing algorithms where you include a third argument and you
keep building up whatever you want to this thing. Our idea is that substitution will be stored here.

 (Refer Slide Time: 28:00)

so we will essentially scan the two inputs pat1 and pat2, left to right is totally incidental, typically
algorithms have to do it in a deterministic way and do one of the following, keep building up one of
the substitution essentially. So when you say pat1 or pat2 they refer to these, they are either
variables or functions or they are lists. So let’s deal with the simpler part first, when both are lists
both pat1 or pat2 are lists, then recursively with the first element of this list, the second element of
the list, the third element of the list and so on. So in this example that you can see that in fact both
the patters that we are trying to unify and Man x Tall x, and Man Socrates Tall Socrates, these are
both are lists. So we will first try to unify and with and, then this sublist with this sublist which will
be done recursively and the second sublist with the seconf sublist.

 (Refer Slide Time: 29:46)

So if both are lists and both must be of the same length which I have not written here, because you
cannot unify lists with different lengths, then you can unify them piecewise in a recursive fashion so

call SUBUNIFY with the first one, then with the second one, then with the third one in this example
and at all the stages keep augmenting the substitution that you are trying to find. If it is constants, if
both are constants then they must be the same. So we have only two kinds of things, either lists or
constants or variables. Variables are the ones which have question mark below them and everything
else is a constant essentially. So and is a constant here in these two lists so they must be the same,
an and will match only an and. Man is a constant, it’s a predicate as far as we are concerned but as
far as unification algorithm goes it’s a constant. So Man must match Man exactly, Tall must match
Tall. So wherever they occur they must be the same constants. That leaves us with variables

 (Refer Slide Time: 31:11)

So I will just take a few minutes to talk about variables. So unification, so we are talking of
SUBUNIFY pat1, pat2 and some theta that we have built up when this particular call to
SUBUNIFY is being made essentially. So we have dealt with constant and lists, constants must be
identical, lists must be of the same length, and we will make recursive calls to this SUBUNIFY.
Now we are left with the case that we have to deal with variables. So Case pat1 and likewise I
would say for pat 2. Essentially if either of them is a variable, so let’s say pat1 is a variable, then we
say call another function which is really doing the hard work so we will say var, pat and theta. So
this is another subroutine that we are writing or submodule we are writing in which the first
argument is a variable, the second argument is a pattern and the third argument is a theta. So we
have to look at a few cases here

 (Refer Slide Time: 32:58)

If variable occurs in pat system failure. I will just state it simply, in the next class we will see an
example and we will probably revisit the algorithm. So if the variable occurs inside the pattern,
which means somewhere inside the pattern, it’s there. Now remember what we are trying to do is to,
remember our goal is to be able to add. Our goal is to eventually say that theta will become theta
union var pat. If everything is fine, we will say substitute this pattern for this variable and that’s one
step towards making the two formulas the same. So that’s the goal of this VAR-UNIFY module, to
substitute pat for variable but we are putting but we are putting a check first, that if the variable
occurs inside the pattern you cannot do that. You must think about this a little bit and we will see
why this is the case.

 (Refer Slide Time: 34:41)

Then if variable pat3 belongs to theta, if the variable already has a value in theta then call
SUBUNIFY with the pat, pattern that you are trying to unify the variable with, and this pattern

which already has the value. Try to see if you can make them the same. If that is the case, then
whatever the value is returned by them will be the value that you will add essentially. So if variable
already has a substitution in theta then see whether that substitution and this current pattern will
match or not. If you come though this otherwise you simply say theta or return theta union this set.
So this is where really all the work is being done in this VARUNIFY this thing, it has these two
tests before you can substitute the pattern for the variable and it has been shown that this algorithm
will return the most general unifier which will make the least amounts of substitutions to make the
two input patterns identical essentially. And it has also been shown that most general unifier for any
two patterns in unique. This we will not go into detail here. So in the next class when we meet we
will revisit this unification algorithm and we will see examples of why these two particular tests
have to be done before you can actually apply add the substitution.

