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What we are going to do here. So, usually tutorial you know all some people here might 

know more than others (Refer Time: 00:32) to present it in a way that will be of interest 

all of you, whether you know able to what are talking about; whether it is all completely 

new for you, and since I do not have a clue what you know I really encourage you to ask 

questions. And this is what I tell my students if you teach you do not understand 

something and you are shy, hesitate to ask because you show that everyone else actually 

know they do not. So, someone has to ask.  

So, what we are going to talk about is, a kind of the very basic question of probability 

adopted to the particular application that we need in computer science or we get in few 

slides to the question of why we develop in the (Refer Time: 00:35) kind of new 

probability tools in computer science will probability whose all with therefore, many 

years and I will try to answer that question. But basically what we are going to look 

around is we go to start with a (Refer Time: 01:52) large deviation bound. 

Now, assume that some of you know, have used over this trade off something called the 

Chernoff Bound. So, if you have never heard about the Chernoff Bound (Refer Time: 

02:08) this is probably the most often used tool in analysis for algorithms these day, but 

if you know what Chernoff Bound, well I want you show you is that is I am going to give 

you some kind of perspectives or what is Chernoff Bound? So, most of us used Chernoff 

Bound is kind of black box well, if I fit all the requirement then I can use it in otherwise 

no I came. Well, that is not the real thing; Chernoff Bound is actually an example of kind 

of general scheme called large deviation bound.  

Chernoff what we gave a popular in computer science, but they have the many 

importants violence which also used these days, but unless going let us known, and just 

for a fun of with I list of this as the donations list of the names of all the bounds. And 



there is along there is a long history here. But I Chernoff did not invent the Chernoff 

Bound, again often in science the names are note the right name and even chernoff 

himself someone you can still meet in bus stand his retired.  

How a professor knows the computer science, but where is (Refer Time: 03:21) he would 

tell you that it is all the mistake he never did it, it is not credit to him. It is probability 

many (Refer Time: 03:28) time who is break in (Refer Time: 03:30) for me he was the 

first one to think about this idea, and then there is a whole chain of developments which 

will go one step after the other which goes Chernoff and Hoeffding, Azuma-Hoeffding, 

McDiarmid and they all have some meaning here. 

(Refer Slide Time: 03:49) 

 

Then I will show you that they know this actually general recipe here, and if you 

understand the recipe then you can use it for any other application that do no t fit in to 

this, so that particular one. 

So, large deviation is about how far is then empirical expectation, The empirical average 

from the actually expectation of random variable, which is they basic question you ask in 

statistics thing. So, I take a few samples. So, I want to know what is the average height 

of his student in IIT is. So, I measure random sample, and I take the average and now I 



ask. So, this is my static or this is the empirical number that I have for my measurement, 

but there is some real value the average, and the question is how far they are form each 

other. That is the basic question in statistics, and large deviation tries to answer it in 

waves question. Waves, but as we focus now in computer science any particular or the 

big success or one of the biggest successes of computer science in this India is machine 

learning.  

And in machine learning, the question is much more complicated than how far is my 

sample from my real value, because I often do not will you know what I am why 

searching for. In fact, that I want to sample well we go for many questions in 

simultaneously. So, these (Refer Time: 05:34) on the again many names, will refer to it 

particular computer science refer to as the sample complexity, it also something called 

uniform convergence, many names for these and it has (Refer Time: 05:49) students 

well, but became very important in recent computer science. So, the second part of what 

are present here will talk about this sampling complexity we will be today we will take a 

few hours before we get them.  

That is kind of high level tools about what are like to cover here, and yeah to make some 

advertisement you know it is a very high (Refer Time: 06:14) you have to commercials. 

So, yeah it is all part of it, it is in a book which some of you might know and some of 

with is a (Refer Time: 06:23) and it will appear in the book, that is why can I finish the 

work to write in a second edition, but as you know it takes a years until that is you can 

see it in book. So, it is all there in a more will be available soon. 



(Refer Slide Time: 06:07) 

 

So, so large deviation bound is kind of trade off between and again it is a usual trade off 

you have been sign in mathematics, were if you give me more conditions in the theorem, 

I can proves stronger results. So, a lot of theorems about the trade off of between what 

you have to assume and what can you proof with this assumptions. So, the same game is 

in the Chernoff Bound in the last deviation in particular of the the most popular of the 

Chernoff Bound basically talks about independents the bernoulli random variable 

independence 0, 1 random variable.  

So, if I take (Refer Time: 07:37) ask how many independence 0, 1 random variables I 

have to average or values I have to average in order to get a good estimate of the actional 

probabilities, which is 0, 1 random variable the expectation is the probability. Now you 

say well ok, life is not only 0, 1 and the random variable they are more interesting things. 

So, the first kind of relaxation, who says well; so what are I have independent 

observation of a random variable, but it is not 0, 1 random variable. Well it is not have to 

show that if it is completely unbounded this nothing you will do, but if the random 

variable is bounded, then will get a bounds which handle that one and this is called 

Hoeffding bound, and then come believe jump; what you say well do they really need to 

be independent? So, well we will actually get rid of that is well, while in some way so, 



what we will do is we will talk in I am sure that this will be new to some of few and not 

new some other people, but I will talk a little about something called martingale, which 

is sequence of random variables that are not independent, but they have very natural 

dependence and we will find the way to found to prove a variation bound though a last 

deviation bound even for a sequence of random variables that are not independent.  

And then we will see that from that one we get very useful results about bounding to 

deviation random of a function of many random variables, and then suddenly it will jump 

to questions like what is the chromatic number of a random graph or what is the links of 

the past. 

So, suddenly you will get from probability to actually answering concrete question you 

know seems completely from a different world. Where we get before we get the others 

these question that always ask when, I give this kind of tutorials in often a when the 

audience is may be not like here, but audience thus varies from different disciplines and 

the obvious question is was well you are computer scientist and you think you event at 

the world, but you know the well interesting science before computer science. So, 

mathematician, probabilistic, researchers already ask all these questions. So, why we 

invent we will why we build new theory of probability, or probabilistic technique for 

computer science. And you could have a long answer for that, but the short answer is 

here. 



(Refer Slide Time: 10:26) 

 

So, here is there prototype of result in statistics or in probability theory. So, probably 

recognize The Central Limit Theorem, and the central limit theorem basically (Refer 

Time: 10:42) n independent, identically distributed random variable with mean mu and 

variance sigma square, then if I take a lot of observations. So, if I take the average of 

this, and normalize it in a while then what do I show? I show that in the limit this 

distribution tends to be normal, often you also learn. Well that is way is nice for 

probability mathematics, where in computer science the limit is not enough, I want to 

know How far I have go. 

So, in computer science we really want to counts, we want to count the steps. So, each of 

this sample is as a cost. So, in (Refer Time: 11:37) it as a cost I have to go and you know 

sample ask someone a question or measure or something. In computer science that is 

computational cost. 

So, it is (Refer Time: 11:48) to know that in the limits, you know that the variation you 

know behave like normal distribution, where there is an help me I many life when you 

ask me how many samples are you need. So, in computer science we want to have 

something that we do not care about the limits. We care about you know half we have to 

go, you know to be sufficiently close to the limit. In other words this is these Chernoff 



Bound will get to this in detail, but just to give in flavor of what we going to do here and 

they contrast to the central limit theorem.  

Here we are going to say if I have n independent Bernoulli random variable observation, 

observation of Bernoulli random variables. Well if there are (Refer Time: 12:38) 

distributed in the probability of which of them being one is pi i. Then the probability that 

is they some of them, is pi from the sum of the expectation, is going down according to 

the expectation of the sum. If we may be better to normalize is to say why the probability 

that the average here, is (Refer Time: 13:17) by delta from the expectation of the random 

variable and then will get those exponentially down exponential use n. 

So; in other words, in not only how where is the limits, but how far do I get to the limit. 

So, that is the big difference between many of the tools we made in computer science, 

and the tools that you use in that you get in standard probability theorem. (Refer Time: 

13:47) it is also well we do not talk about here, but also (Refer Time: 13:49) we 

Queueing theorem. So, in Queueing theorem you have the beautiful results, but usually 

talk about the limits distribution, and then when in computer science we want to ask 

about the size of buffers, the queues, in routing and stuff without, then Queueing theorem 

has somewhat limited in answering a question. Because we want to know you know how 

first things converge what happen when they do not converge and stuff like that once a 

side remark. 

So, now we are going to ask. So, now, you have to stop. So, this was introduction now 

you get to the stuff. Now everyone in probability is some for Asian on what is called 

Markov Inequality. Now that is the very trusting phenomena, Markov Inequality, on it is 

own is extremely weak bound, which you probably also in some class it is extremely 

weak bound, but everything is building on it. So, what is a Markov Inequality it only 

applies to random variable that is non negative, and the probability that is random 

variable is greater than; so value a, is bounded by the expectation of the random variable 

divided by this value, a and it is really (Refer Time: 15:19) want to proof if you think 

about the expectation, I am sorry. 



(Refer Slide Time: 15:26) 

 

The expectation of x, let us assume that is discrete and the variable. So, that is sum of I, I 

probability that x equal i. So; now, let us do two simplifications. First will just look, this 

is definitely greater or equal, than if we just sum above a probability that x soon time I 

probability that x equal i, but now we sum only above a then, definitely is greater than 

sum of a probability, I greater or equal to a probability x equal i. 

So, now if we take a outside, then what is we can here the probability that x is greater 

than a, and we get this. So, that is a very simple bound and only we the only reason we 

mention it here is, because everything else will do, will built on that bound. So, amazing 

that you start with this will show later will do the comparison with other one see that this 

is so weak, but when you built on this you get amazing (Refer Time: 16:55) stuff the first 

one again note really what we will talk about here, where the first bound that is built on 

Markov is Chebyshev’s Inequality and Chebyshev’s Inequality basic said well instead of 

thinking about x now thinking about x minus e of x square and then we plug it in and we 

get Chebyshev.  

Chebyshev is (Refer Time: 17:19) for a stronger bound, it works for random variable that 

oppositive and that can be positive or negative and again will do the comparison we will 

see nothing it get better one. Perhaps note do not get (Refer Time: 17:30) to be needed. 



(Refer Slide Time: 17:35) 

 

We want bounds that go down exponential. Now, we get you this general technique of 

large deviation bound. The technique is the following; I want to know what is the 

probability that x is greater or equal to a, well if I pick t that is greater than 0, then the 

prob h is equal to a is the same as the probability that e to the tx is greater than e to the ti. 

As long as I took t that is greater than 0; now we got something about interesting, we 

started using random variable that can be positive or negative, but e to that is is always 

positive or non negative. 

So, now I can take this, now we run the random variable here that is no negative and now 

I can apply Markov inequality, but Markov inequality now says what is the expectation 

of this divided by this. So, the probability that this random variable is greater than this is 

bounded by the expectation of this random variable. So, we took random variable, and 

instead of asking what probability these are the variable is greater then I, we ask what is 

probability that e to the t to the x e to the tx. So, of actually this random value is greater 

than e to the tx. 

Now, if you look at it that is that is a quality. So, we can of did not do anything rather 

than retain it in a more complex way. As it happened this jump for looking at the random 

variable looking at the exponent of the random variable as a very dic meaning, that we 



have to discuss in second. This gives very strong bounds. Now this is for the question 

whether x is greater or equal to a. e can do we can ask. So, the opposite question is using 

t less than 0. So, the probability that x is bounded by a from below a from above well 

now t is negative.  

So, if multiply t both sides we switch the inequality. So, this is now going to be looking 

the same, only t is negative and we get the same bound using the Markov Inequality. 

Now realize for those of you see it the first time this is just symbolic manipulation and 

you will take some time and until I can show you, know they application of this. So, 

there was (Refer Time: 20:41) we have to go some formalities, until we get to the real 

application, but this is the kind of the general form. 

(Refer Slide Time: 20:51) 

 

So, in order to get all these different bounds that we look before that we enumerate 

before, basically what you doing is you doing the following. So, here is like a rest of p, 

an algorithm for generating bounds. So, you take random variable, they have part usually 

is to compute the expectation of e to the tx. Now you gets for what we had before that 

prob at x is greater than a, is bounded by this expression and the probability x is bounded 

below by is this expression. 



But now; where we free value here to play with, because here we just say well take any t 

either greater than 0 or lower than 0 , smaller than 0 . Now, you can play with t, so of 

course, will go will try to find the t, since we want to get a bound we try to play was t to 

find the minimum value for this bound. Now, we the next second step, that is often give 

us kind of how to remember bounds. So, this third one is usually we simplifying to 

something that is easy to work with. So, all the bounds will have this structure. 

But before we get to particular bounds, but I want you to show you and this is often it 

grow completely in computer science, is now this is not the magic there is very particular 

reason, why we move from the random variable to the exponent to the random variable 

in the exponents, so where we those of few who study enough probability, what is this 

function. 

Student: (Refer Time: 23:03)  

Hm? 

Student: (Refer Time: 23:06). 

I do not hear. 

Student: Moment generating function. 

Moment generating function, it is one of that is Chernoff of being (Refer Time: 23:16) 

we there may about some function who tries a long list of function; there is a particular 

reason why we use the exponents of the x. The reason is that this is the moment 

generating function, and the moment generating function in a way and called the whole 

distribution.  

So, Markov Inequality is to say well give me the expectation and I will give you some 

bound. Chebyshev said well give me a little bit more, give me the variance and I will 

give you stronger bound. Now we say, I do not want to just to first moment the second 



moment give me all the moments. Give me the all distribution. Well, if you give me the 

all distribution, I give you much, much stronger bounds. And I will show you in a second 

how strong they are. 

(Refer Slide Time: 24:16) 

 

So, just to remind you; so the moment generating function is the expectation of e to the 

tx, and this is just (Refer Time: 24:23) remember. So, the moment generating function 

there is we call the moment generating function is that, in the function encoded in the 

function. All the moments of the random variable, moment of the random variable is the 

expectation. So, a moments, so they the k moment of a random variable is E of x to the k 

and a really how theorem to proof that usually do not do in a basic causes is that. 

There is one to one correspondence between a distribution, and it is sequence of 

moments. So, if you know the sequence, well if all the moment exists. Then knowing the 

sequence of moment is a fluent to knowing the distribution, you can go for one to the 

other. So, the all generating function defines all the moments. So, in a way for the 

distribution that we work is for which all the moment exist, in a way what you put into 

the recipe what you put into the inequality is the food information about the function, but 

the distribution.  



Or you do it well if you take the moment generating function, you take the k the 

revertive of it is and you sets t to 0 then you get the t moment the k moment. They last 

thing that the I want to you remind you is that is the moment generating function of a 

sum of random variables, is the product of the moments for of independent, the sum of 

independent random variable is the product of the moment generating function. So, that 

is actually very simple because if you write it is. So, the moment of x plus y is e to the t, 

x plus y and if it is independent. Then the expectation you can take the product of the 

expectation in the term, will just going to use it in second. 

(Refer Slide Time: 26:44) 

 

So, one thing to remember is that is it is not the magic that we go to this e to t x, we 

using the moment generating function in our expect to get better stronger bound. 

So, it is a kind of the proof of the first basic Chernoff bound. So, let us x one to x n be a 

sequence of independent Bernoulli prior random variable. So, the probability x is 1 is p I 

probability x I is one is pi the probability, and then we looking at sum of xi's. So, notice 

(Refer Time: 27:27) way that is we no need the x 1 to x n to be identically distributed 

what we need them to be 0, 1 random variables, but each of them can have it is 

probability to be one. Which and (Refer Time: 27:42) you also these expectation. I was 

have a some this is actually very important, when we get to analyze algorithms because 



we often ask well how many steps we have to do it is steps some probability of success 

or not. So, if you know we can still apply the Chernoff Bound even if the probabilities of 

defect. 

Now let us, mu be the expectation of the sum. Sun of the expectation which is the sum of 

the pi's. Now, both we want to ask is if I take n observation of x 1 to x n, and I look at the 

sum the value of what I get, how far is it is from sigma of pi. In other words if I look at 

the sum of an observation, how good are the as a predictor for the read expectation that is 

shuffling it is statically question. 

(Refer Slide Time: 28:56) 

 

So, is that we use this recipe and the first one is we have to computes expect the moment 

generative function or the expectation of e to the tx, that is usually whether difficulties. 



(Refer Slide Time: 29:14) 

 

But now, we going to use the fact that x is sum of independent random variables. Here 

some of independent random variables. So, in that case we just have to compute the 

expectation of each xi of e to the txi or, but now it is getting very easy because xi just 

getting the value 0, 1. So, if it is one then it is pi e to the t and if it 0 it just one minus pi; 

that is easy and now we do some manipulation here and it is bounded by e to the pi, e to 

the t minus one. 



(Refer Slide Time: 30:01) 

 

So, now, I have a bound for each of the moment generating function each of the xi's. So, 

I think the product to it is, and I get a bound for the sum and throughout this stock I will 

skip the arithmetic’s; so whatever the symbolic manipulation is all on the slides, if not in 

the book. I want to you give you high level idea I mean I do not want to get in to the 

(Refer Time: 30:32) computation. So, after I computed the moment generating function 

of each xi, I used fact that the x I are independence. So, the moment generating function 

of the sum is the product of the moment generating function. So, I finish one part. 

Student: What mean mu here? 

Sorry? 

Student: Mu. 

Use the expectation sigma of pi. 

Student: So (Refer Time: 31:00). 

So; now, we apply the Markov Inequality. So, the probability x is delta way from it is 



expectation. So, it is probability e to the t, tt x is greater than e t one plus delta mu, and 

now it is bounded by the expectation of this random variable divided by the value, and 

the expectation we computed is this value, and so, we have this value. Now, we said last 

part and second part of the recipe is, where we have this free value here t, free variable t 

and now you want to optimize with respect to t.  

We want to get this value as small as possible with respect to t. So, you can take the 

derivative or just believe me that if you plug t to be lon of one plus delta you do some 

manipulation you get this bound. I have to see that is t only can plug you t that greater 

the 0, but if delta the deviation is greater than 0 then, t of lon 1 plus delta is greater than 0 

and now everything is fine. I get first version of Chernoff Bound, it looks good, but it is 

somewhat how to remember or to memorize. 

(Refer Slide Time: 32:51) 

 

So, that come kind of games of are you take it is look just something that is easier to 

work is results, we know giving up too much on a bound. 

So, this is title this is easier to remember. So, the probability this is what usually seen in 

papers, to the probability that is x deviate by more than delta from which expectation, is 

bounded by the expectation delta square over 3. Why you get this 3? So, just 



technicalities of how you show that these is bounded that these is an upper bound for 

this. Then you can get even weaker bond, but easier to work with that you go for a very 

large variation.  

So, if you go for variation which is, 5 time the expectation then the probability that you 

greater than that value is that two to that to the minus that value, but you prove it you do 

arithmetically as basically high school calculus. So, you take a derivative the second 

derivative then you show that you get the right box. So, we will do it here. So, basically 

you show. So, for example, you want to show that these are always greater than this 1. 

So, take the derivatives in the second derivative you use some delta work and you get the 

bound, the same for the other one. 

We not do it in detail, but a similar bound work on the other direction. So, Now, you ask 

what is the probability that the random variable is delta y below the expectation. So, 

what is probability that instead of getting the expectation I go to value that is delta y 

below that, and you get basically the same bound only here you have 2 instead of 3 

technicalities. You do it the same way we already computed the expectation. So, we use 

the same bound only thing is now we have to use a t in order to minimize we have to use 

a t that is smaller than 0 because we switch the order of the inequality, but this is exactly 

two for this delta that is between 0 and 1 which is what you can plug here. So, let us give 

you the box.  

Now both of this one, so let us take the simplest one. So, assume that the I flip a coin a 

flip a coin half half coin n time, and ask what is the probability that the number of heads. 

So, what is probability that the number of heads deviate from the expectation by more 

than this value half square root 6 n log n. So, now, we plug it into the Chernoff bound. 

So, to plug it we want to here we have to write it a little bit different we want to as 

suppose with x is greater than the expectation plus the deviation, and we look for the one 

going up a above that, or below that is and we get that the probability is two over n. 

Now, how go to this bound. Now, you know. So, many intuitions behind now do not just 

take the symbols. So, how good this well. So, if I flip the coin, n time and we are saying 

now it is (Refer Time: 37:02) random variable does not to be flip the coin, but flip a coin 



is a good example how tight I could actually expect the actual result to be half a (Refer 

Time: 37:12) should expect it to be from the expectation.  

Always, definitely very unlikely to be exactly the expectation; the probability of getting 

exactly half is very small. So, well you actually expect it to be, where most of the mass 

well that is a standard deviation is. So, I cannot expect to prove a bound, but is better 

than plus minus 1 or 2 standard deviation, because it is just now, whose high probability 

you know it is somehow distributed in plus minus 1 or 2 standard deviation you can 

(Refer Time: 38:00) the bound in that. 

(Refer Slide Time: 38:09) 

 

What is the standard deviation here? The standard deviation in here is square root of n. 

Call some constant theorem. Then the lon here is what give us this whole probability. So, 

I said that because often you see that you know you trying to prove something, and then 

you I can you I can it does not work and sometime you just steps.  

I should, I can look at it and say I cannot work what are I try to prove which is not true. 

So, random variable you know expect it if we have more and more observation we 

expect the average to get closer and closer to the expectation. Where we never be the 

expectation and it is going to be somewhere, you know plus minus standard deviation, 2 



standard deviation. You will get the theorem. So, now, let us do this comparison between 

the 3 bounds. 

(Refer Slide Time: 39:16) 

 

You now to get any strong results with the weak bond we have to ask much weaker 

question. 

So, let us ask what is the probability that is; when I flip a coin n time I get 3 quarters 

heads that is really unlucky. So, if I plug it into the Chernoff Bound to Markov inequality 

there are probability that is I gets three quarter n helps well probability is bounded by the 

expectation time the value here the a, and we get that the probability is bounded by two-

third is really nothing, is not bound here and particular what is real we seen is that the 

intuition is that is f if we flip more and more coins, if we do more and more experiment 

we expect is somehow to converge to get closer and closer to the expectation and here 

we gets bound that as nothing to do with the member of experiment with it. So, let us 

Markov Inequality where would if it channel Chebyshevs.  

So, the probability that we deviate by from the expectation by n over 4, now, if you have 

remembered Chebyshevs we have to that is bounded by variance divided by this square. 

So, the variance here is half time, half time n and we divided by this square. So, we get n 



square then here and appear we cancel. So, we get at least something that goes down to 0 

who is n is n goes to infinite, but it goes down the linearly is n. So, now, we look at 

Chernoff Bound which we just proven. So, the probability x deviates from expectation 

by n over 2. So, let us probably that x is greater than it is expectation 1 plus half or it is 

smaller than expectation by 1 minus half. Now, we plug it here and remember that is 

bound that we move, is the expectation time the deviation square. 

The expectation here is n over 2, the deviation is half. So, it is quarter here, then we have 

some coefficient here and what we get here is bound that goes down to 0 exponentially in 

n. So, going for one to the other we started with the bound that it you can go down to 0 

as n goes to infinity. Then Chebyshevs gave as a bound that goes down to 0 as n goes to 

infinity, but it goes down as one over n. That is linear and then we get the bound that 

goes down to 0 whose n exponential in n.  

So, that is significant jump between these bounds, with the beauties is that all build on 

Markov inequality that is. So, weak is. So, weak on it is own. So, that is the basic bound 

Chebyshevs. The Chebyshevs bound and comparison of the C hernoff bound. So, that is 

in particular when use it in algorithm what was it say he says that if I want to get 

something that is you know the exponential is small or If I want to show that the 

algorithm you know work fast same as probability one over n, then I just need log n 

experiments or log n values instead of n values, that is a huge jump when it was (Refer 

Time: 43:38) you know execution of algorithms, we will see example later. 

So, the simple application of all these is estimating the parameter, and the caution is 

actually note question (Refer Time: 41:01) a note question computer science questions in 

statics, but it is give as the right idea of what happening here. 



(Refer Slide Time: 44:03) 

 

So, assume that there is some p value and on. So, the story here is I want to know the 

fraction of the population that has particular mutation. If I am getting sample for 

someone in it black sample some where we can test and I can figure out if he or she has 

to be mutation or not. Well I could go in a test all the population of India, this may take 

long time. So, the question is you know how many samples I need in order to get the 

very good estimate for the whole population.  

And the same question of course, is when you try to predict the lecture is as an you know 

all the other things and of course, is most people other than scientist like you, do not 

understand is in order to estimates the value in a population. Where you should do not 

care about the size of the population. The sample size as we see as nothing to do with the 

size of the population, which is always very (Refer Time: 45:24). 

So, let predicting the election is at in India and in Singapore takes the same amount of, 

the same 1400 sample assuming that you give me actually from sample. Whatever I 

know it is much more complicated than that. So, so you have to evaluate you want to 

estimate the value that is unknown. So, we have in what is called classic statistic. So, p is 

some unknown only God knows that and it tells us. So, we are only estimating it we will 

never actually know the real value. We will take n samples in p till the n will be the 



fraction of the samples that, had what we looking for, the mutation. So, give a sufficient 

number of samples we expect the value p, to be in the neighborhood of our estimated 

value p tilde up. 

(Refer Slide Time: 46:40) 

 

Well one way we can use the Chernoff Bound is to estimate, how close is p tilde to p. Is 

the function of the number of samples? In computer science usually refer to this as we 

often do it now machine learning, (Refer Time: 46:45) of that we answer this kind of 

questions, and the two ways to estimate the value was in statics and machine learning. 

One of them is go what is go to point estimate the other one is a interval estimate. Now 

point estimates is very (Refer Time: 47:07) because most the point estimates it just 

coincidence that is give sample give this particular value is a maximum, but you know 

the value can be in the neighborhood of this. In particular if you think about.  

So, in much more will have a (Refer Time: 47:29) to get into this we can do in some 

other, over much more reliable and meaning full estimate is what is called a Confidence 

Interval. Confidence Interval is I will give you. So, confidence interval for a particular 

value t is I give a range; such that is very high probability the value is in inside that range 

that is something very confusing here. 



T is this value that is, return you know God knows about it. But it is a fixed value a 

random variable is in fact the interval, goes the interval is what we get from a sample, the 

values that we get from the sample. We say well if we got p tilde, is a expectation of the 

sample we go delta plus and the delta minus and we say well we expect the real value to 

be inside this interval. So, this is actually random variable this is a fix value in nature. 

So, now I want to minimize.  

So, the real thing here is you have these 3 parameters you want to play with; you want to 

minimize the intervals. So, that you have a meaningful estimates. You want to minimize 

the arrow probability that is q, and you want to minimize the number of sample because 

that is what you pay for. That is what the work and the question is; you know how do you 

get the tradeoff between them? So, you want the probability that is the interval include 

the real value of p, which is the same as they number of you know positive observation 

you had minus delta, plus delta you want this interval to include n time p in order to be 

use high probability. 

(Refer Slide Time: 49:44) 

 

So, we have to look it is above that and below that, is and I want to get the detail of the 

calculation, but basically you gets, you plug it into an Chernoff Bound and you gets a 

basically the relation between you want these to be bounded by q, you get n and delta 



here. So, you get the full relation between this (Refer Time: 50:02). So, that is one simple 

application of a Chernoff Bound that gives you very good values and actually it give you 

very (Refer Time: 50:14) estimate and again we are playing with delta. Who is q, Who is 

n the size of population does not appear in this whole computation.  

(Refer Slide Time: 50:36) 

 

Let me. So, finish this. So, let me just (Refer Time: 50:40) about what we said before 

because again this is important. So, assume that we have let us, I just want to give you 

the more precise comparison on between the Chernoff and the Chebyshevs inequality. 

So, assume that we have, this assume to I think easier that which is sum n a random 

variables which probability p for success, assume random variable probability p for 

success. So, the expectation of the sum of n variable a this n 0, 1 random variable is np 

the variance is npq and if you know all these.  

So, if we use chebyshev you gets the probability that you deviate from the expectation by 

delta time the expectation, is bounded by the variance divided by this square of the 

deviation, and if you plug the I think you get that is basically q, divided by delta square 

mu. And that is important one is delta square mu and now actually do the Chernoff 

bound. So, the probability that you deviate from by mu, from mu by delta is bounded that 

e to the minus mu. Delta square over 3.  



So, that this delta square mu, that pr involves cases is to say one only here at the pr is 1 

over that then here it is minus that in the exponent. So, the real thing that is go down to 

the real measure, of convergence is in the expectation time the variation square time they 

deviation square. Where is that? (Refer Time: 52:39). 

Student: (Refer Time: 52:41). 

I do not hear. 

Student: Which Chernoff Bound as the best bound you can have say for (Refer Time: 

52:49). 

No. So; as usual there is a tradeoff between general a tools and the best you can get. So, 

if you give me a particular problem, you know I can probably squeeze some of better 

bound, because to get the bound we did also of simplification here, but the. 

Student: for the example of (Refer Time: 53:15) how can you implement? 

For example of the point estimate. 

Student: Point need of the co-ordination from the expectation. 

Yeah. 

Student: So, do for Chernoff bounds. 

Yeah. 

Student: To get a better upper bound using the specific information for the expectation. 

Well. So, it depends on what information you have, but in you would not get much better. 

So, they will see next time, that if (Refer Time: 53:42) the Chernoff Bound for very 



simple case of you know two value and the variable converge it gets it looks very, very 

similar to answer the normal distribution. So, beyond the fact that it is you know that is 

the question of convergence now a distribution we do it with respect to particular n. We 

are getting very close to the limits.  

So, but again when we develop the bounds, we gave up a few we gave a little bit in 

getting the you know, easier to work bounds, but the difference is almost significance. 

So, the exponent would not change, that is may be some constant even there, but you 

know asymptotic that is the best you can get at least for the case of 0, 1 random variable. 

Student: (Refer Time: 54:42). 

Yeah. 

Student: This is not a best (Refer Time: 54:43) in terms of (Refer Time: 54:44).  

I do not hear you. 

Student: can you prove that this is one of the best you can get in terms of asymptotic. 

Again, so you can show it for the case of a 0, 1 random variable you can show that the 

asymptotics you get very close to the normal which is the limit. 

Student: (Refer Time: 55:02). 

Ah not directly but yeah that is part of the reason, but they again, if all of you if you if 

you if you have n identically distributed random variable 0, 1, then yeah then it could 

converge the very basic you show that you converge to a normal. 

Student: Using. 

Yeah. So, you show that it is. So, basically you get you know in the limit you are in the 



optimal, but if you start with random variable that of different, then I do not think you 

could get, you can show the directly that is optimal. So, there might be some twists that 

you can do more use the particular distribution, but then with the all idea of a building 

this kind of tools is that you do not have to work, you know the details for which 

distribution, but you get something that works in general or yeah. 

Student: based on this question if we know if we have some trias, then how we can use 

them to say. 

Something about bounding; if we have a bias. 

Student: Trias. 

Student: (Refer Time: 56:19). 

Or if you now you want to do bias here that are, yeah you can do that is, but that require 

some stronger tools. So, one way, keep your question for the next hour, I mean for 

tomorrow. So, one way to look at bias is in terms of (Refer Time: 56:45) here that is one 

way to look at it. 


