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We are now going to look at a very fundamental problem, and it will also service an 

application of Chebyshev’s inequality; and the problem is that of finding the median 

element in a num-sorted array. So, the input is an array S of n distinct integers I mean 

they do not really need to be distinct, but for simplicity we are going to assume that they 

are distinct.  

And of course, we are going to assume that the arrays arbitrarily permuted because if it 

sorted then finding the median is trivial. So, the output the required output is the median 

element m, and those of you have taken basic algorithm course, metric all that there is an 

O of n times algorithm to find the median and that runs in deterministic O of n time is 

always correct. However, the advantage with of this algorithm is that it is simple to 

implement, and also serves to illustrate Chebyshev’s inequality. So, from that point of 

view, we are going to study this problem. 
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And the key idea is a following. So we have an input array S, let us view this array in its 

sorted form and let emphasize here that the input is arbitrarily permuted when we are 

talking about the sorted view, we are purely talking about the array from analysis point 

of view. So, there is no sorting there is actually happening. So, in this sorted view, the 

middle element of course, is the median; and the idea behind this algorithm is to find two 

elements d and u on either side of m.  

And hopefully these two elements are close to m. So, what do we mean by that. Let us 

define C to be the set of all elements in the array S that lie between the end u. And we 

want that set C to be small in particular we want that to be little o of n over log n. And 

this would mean that if you sort C, you only require this o of n time. And if you are able 

to find such elements d and u and such that these properties hold, so d and u are either 

side of m and the set C that we have defined here are small, these are the requirements. 

Now, suppose we are able to find these elements then we can find the median and here is 

how that works. 
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So, we are able to find the d and u as we required then it is easy for us to compute C, you 

just have to scan the entire set S, the array S and find all the elements that have values 

between d and q and so that will provide us with the set C. In that process, you can also 

find the order of dth, the position of d in the sorted view of S, think about that that is 

fairly easy to find. And so then what we do is we sort the set C, and I think about it, it is 

given the order over the position of the item d in the sorted view of S and the faculty of 

sorted C, it should be easy now to find the median. So, take a moment, pause and make 

sure you know how the median can be computed under this context. 
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Now, that if I had a chance to think a little bit and make sure you understand the high 

level idea, let us actually look at the details. So, here is how the formal algorithm goes, 

this algorithm is taken straight out of (Refer Time: 05:08). So, the notations are as we 

have defined the set S is the set of elements that we want to order from which we want to 

find the median. And here is how the algorithm goes and as first we need to figure out 

how to compute d and u, and how do we do that we achieve that by sampling. So, we 

have to pick a set R, where each element in this R is chosen uniformly at random so that 

R for us, each element is in R is chosen uniformly at random and independent of each 

other from the set S. 

And how many such elements do we choose, we choose n to the three-fourth. And then 

we sort that set R questions is n to the three-fourth. We should be able to do that sorting 

in little o of n time. And then we identify elements d and u in the following manner. 

Notice that since there are n to the three-fourth elements in R, n to the three-fourth 

elements divided by 2 will be the middle elements if you were to sort R. So, from that 

middle element, you walk, square root of n steps to the left you will get d. You walk 

square root of n steps to the right, you will get u; these are your d and u and these are 

elements chosen from R, but they are actually originally elements are from s. 

(Refer Slide Time: 07:28) 

 

Now, that we have identified the elements d and u, we have to conform that these are 

actually good elements, because where d and u have to follow some rules. If you recall d 



and u have to be on either side of m in the sorted view of s and the set of set C that we 

define here a set of elements in s that are between d and u should be small that 

cardinality of that set must be small.  
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So, we have to verify that we actually have good pair d and u. How do we do that well 

we compute the set C straight out of the definition, but this will require an o of n scan 

through the set of elements in x. And then, we find the number of elements that are 

elements there are less than d and the number of elements that are greater than u. Now 

we need to make sure that the there are a few conditions are satisfied. The number of 

elements less than d should not exceed n by 2; if that was a case when the median is 

smaller than d and so that is a bad choice of d. 

Similarly, the number of elements that are larger than u should also the less than n by 2 if 

it is greater than n by 2 then again your choice of u has been bad. And finally, the set C 

its cardinality has to be small; in particular we (Refer Time: 09:10) there has to be no 

more than 4 times n to the three-fourths, if it is more than that then again the out choice 

of d and u is bad. So, we want to verify that our choice of d and u are good. If we realise 

that the choice of d and u are bad, we immediately output a fail. 

Now that we ensure now where a step 8 here we will ensure that it is not a failure our 

choice of d and u are both, so that at this point we can easily output the median. And you 



should be able to figure out why this particular element in this sorted ordering of C is the 

correct median. So, here are the couple of exercises for you.  

Suppose the algorithm does not output fail meaning it is come up to line number 8 here. 

Then prove that the algorithm will in fact correctly output the median that simply 

requires you may ensure that this particular element that we are outputting is in fact, the 

correct median so that is the first exercise for you, just ensure that you convince this 

correct. And also convince yourself that the running time of this algorithm is at most O 

of n. 
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Now that if convinced yourself of those two claims, now let us move onto the important 

aspect of bounding the probability of failure that is the only important thing, key thing 

that is left you want to ensure as a consequence of exercise a. 
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You know if it does not output fail, you are correct. So, you just to make sure that the 

probability of failure are very low. 
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So, let us look at it bit more carefully. Feel free to pause, and start at this figure to 

convince yourself that the claims you are making correct. (Refer Time: 11:36) is 

available here for you as very reference, see what happens. So, we have the set S and we 

have shown in the set S in its sorted view. Now of course, this is only for analysis 

purpose, and the median m is the middle over there and we are sampling our multi set R 



which is this 1 over here, this is the multi set R, and we are actually sorting R. So, once 

we sort R, it is going to be appearing as R 1, R 2 and so on up to R n to the three-fourth, 

why because the set R has cardinality n to the 3 fourth. This set R itself has median and 

that is this elements over here. 

And from that median element, we walk square root of n steps to the left, and look at the 

elements over there that is our designated d; from the median element, we walk square 

root of n steps to the right and that will be our designated u. And ideally, we want d to 

fall, if you look at d not in the set R, but in the sorted view of the input array S, d should 

be to the left of m, and u should be to the right of m that is the ideal requirement. And 

more over you also want the number of items here to be small. So, these are the ideal 

requirement that we have. 

Now, since our main focus is to, bound the probability of failure; let us try to understand 

why this algorithm might fail, what are some events that will lead to the failure of this 

algorithm. The 3 events that we will lead to failure - the first where really symmetrically 

equivalent of each other, so let us look at the first manner in which the algorithm can fail 

that the element d that we choose according to the algorithm turns out to be larger than m 

meaning in the sorted view of S, d appears to the right of m then that would be a bad 

event, because now what we wanted was d to be to the left of m, u to be to the right of m. 

Similarly, the second events which is capturing the mirror image where the bad events 

here is that u is appearing is less than m which means it is appearing to the left of m in 

the sorted view of S, so both of those are bad. And of course, the third bad event is the 

set C, the elements between S between d and u has cardinality that is more than 4 n to the 

three-fourths. So, these are the 3 bad events under which the algorithm is going to output 

fail, and we want to ensure that these three bad events occur individually with very low 

probability, and then we simply apply the union bound to say that even collectively they 

have low probability. 
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So, in the interest of keeping this lecture short, the third event, the task of bounding the 

probability of the third bad event the cardinality of C greater than 4 into the three-fourths 

is left as an exercise. As I pointed out earlier, even one and two are symmetric 

equivalence of each other. So, we are only going to focus on the first bad event, so we 

want to show that the first bad event namely the d greater than m happens with low very 

probability.  

So, let us look at the given a bit more carefully. So, when in this so recall that we have 

the sorted view of S over here, and this is the sample set R, and we take the median in 

the set R walk a square root of n steps to the left we find the d and unfortunately d 

happens to be larger than m. So, this is the way in which this bad event occurs. 
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So, how can this what is this mean, this means that more than n to the three halves a 

three quarters divided by 2 plus square root of n elements in R are larger than m. What 

we mean by that, well, all of these events I mean all of these items are all larger than m. 

And what is the cardinality of the set that is this, remember this is the median element 

and we walked square root of n steps to the left so that we have to add that this 1. And 

obviously, this looks like an unlikely event, but now we have to formally proof that it is 

indeed unlikely. So, let us set up some notation to do that.  
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So, what we are going to do is define a Bernoulli variable X i will be a 1 is the ith 

random sample, you know the set R is obtained by sampling from the set S. So, the X i 

equal to 1, if the ith random sample is greater than n well that is remember that is the bad 

event where when you have lots of items in particular more than this many items larger 

than m that is the bad event. So, with that in mind, we are setting up the X i(s) in this 

manner. So, now, that you have defined X i to be 1, if the ith random sample is greater 

than n otherwise X i is equal to 0. So, this is our Bernoulli random variable. 

And it is the expectation of x i is close to a half, it is very, very close to a half. So, we 

were just going to assume that it is a half. And of course, now with these we aggregate 

these indicator random variables to define the set x to be the sum of all these indicator 

random variable, and there is a total of n to the three-fourth such indicator random 

variable, because R has cardinality n to the three-fourths. So, the expectation on x is 

there it will be n to the three-fourths divided by 2, so that is this. Notice that x is a 

binomial random variable, so its variance is actually given by the number of Bernoulli 

random variables times the probability of the success of each Bernoulli random variable 

times the probability of failure of each Bernoulli random variable. So, the variance of x 

turns out to be n raise to the three-fourths divided by 4. 
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So, now let us get reminder servers what the bat event is we are trying to shows unlikely, 

we were trying to show that the bad event of more than n to the three-fourths divided by 



2 plus square root of elements in R or greater than m is small, so that is this probability 

that we have over here. And that probability can be phrased using the notation that we 

have Del, so that probability is equal to the probability that the random variable x is 

greater than n to the three-fourths by 2 plus square root of n. And let us do little 

rearrangement, we bring the n, this term over to this side and within interest in applying 

Chebyshev’s inequality, we take the absolute value. So, we are actually slightly over 

counting here, the probability that the absolute value of the difference between x and n to 

the three-fourths divided by 2 is greater than square root of n. This event as greater 

probability than the probability of event that we are actually interest in that is good we 

want an upper bound on the probability of bad event. 

And now it us in a form that we with which we can apply Chebyshev’s inequality and 

this probability is at most variance of the random variable x divided by the square of the 

right hand side over here, which is and this terms is square root of n, this is essentially is 

just divided by n. And so this whole probability turns out to be n to the minus 1 by 4 

divided by 4. So, by symmetric, the probability that u is less than m is also at most n to 

the minus 1 by 4 divided by 4. 
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As an exercise, you will have to work out that the probability that the cardinality of the 

set C is greater than 4 n to the three-fourths is also small, and particular it is no more 



than n to the minus 1 by 4 divided by 2. Now, these are all the probabilities of the 3 bad 

events. 
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And when you add those 3 probabilities, essentially applying the union bound, you can 

infer that the probability that the algorithm will output of fail is at most n to the minus 1 

by 4. So, with that we can conclude with our theorem, which states that the randomised 

algorithm that we have studied for finding the median of set of n integers correctly 

outputs the median with probability 1 minus n to the minus 1 by 4 and runs in O of n 

time.  

With that, we conclude the study of R median algorithm. 


