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The collatz conjectures is quite different process, you start with some number. If it is 

even you divide by 2, if it is odd you multiply it by 3 and add 1 to it and you continue. 

So, this is an interesting process and the conjectures states that eventually you will end 

up in the ending state being 1. So, why is the ending state 1? Because well once you 

reach 1 it is an odd number times 3 plus 1. You are going to go back going to 4, 4 is 

even. So, you come back to 2 and then back to 1 and so on and so forth. 

So, you have essentially started cycling this process both the conjectures states that any 

where you start you are eventually going to come to this cycle of 3 numbers and this is 

been quite interesting for a long time, but as the cartoon indicates, you probably do not 

want to get to access with that. In fact, this more interesting process is that we can talk 

about well, what could be more fun than the collatz conjecture? Well, what is the type of 

process there are drunk man would take while walking on a street, turns out that might 

have quite interesting properties in on itself. So, that is what we are going to talk about 

today later not. Let us get to it, but let us motivate this by well known problem. 
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We are going to talk about the 2 SAT problem and just talk about 2 SAT problem you 

know perceptual setup some definitions. So, what is a Boolean variable x it is the 

variable that can take 1 of the variables either 0 or 1, and we are interested in a logical 

formula and when the logical where the Boolean variable appears in the logical formula 

it is called a literal and of course, it can appear in 2 ways either the positive form or the 

negative form and particular in the 2 SAT or the k.  

More generally in the k SAT problem we are interested in logical formulas that 

conformed to 3 CNF or algorithm CNF format, what is that? Well, it is a conjunction 

basically and of several clauses and each clause is a disjunction of literals in the context 

of 2 CNF each clause will have exactly 2 literals. 

So, here we see an example of 2 CNF logical formulas and the SAT question is can be 

assigned truth values to the variable. So, that the formula will be validate to true another 

way of stating it is can we assign truth values. So, the formula can be satisfied. 
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So, here we see a very, very simple algorithm and I call it, “can you believe this works” 

algorithm because the first time I saw it is a little bit magical. So, here is the algorithm 

the input is of course, 2 CNF formula and there are n variables in it and you how do you 

find out whether there is a truth or satisfying truth assignment, well you start with some 

arbitrary truth assignment and you keep repeating this process in and you repeat up to 2 

m n squared times, where m is a suitably large integer or until you find a clause is 

satisfied of course, if you find the clause as the satisfied you can terminate that is what 

we do here, but let us not jump ahead. 

So, we repeat this process, in each time we repeat we choose an arbitrary unsatisfied 

clause. Suppose, if we have found truth assignment that satisfies the formula will be out 

of the loops. So, it is always going to be an unsatisfied clause if we are inside the loop 

and so we find one such clause and we look at the 2 variables in that clause remember 

this is 2 CNF. 

So, there are 2 variables and which is pick one of them uniformly at random and flip it is 

truth value and then again check if the truth assignment is a satisfying assignment and if 

it is not be repeat this process and we repeat this for this many times; 2 m n squared 

times until we either exhaust the number of trials or we simply or we find the truth 

assignment and of course, we find the truth assignment we will return it, but if we do not 

find the truth assignment we are going to conclude that there is no satisfying truth 



assignment and this is where it seems a bit magical to me. Let us make some statements 

about this algorithm. 
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First of all it is quite clear that it is always correct when there is no satisfying truth 

assignment because in that case, we will always be exiting this loop having not found the 

satisfying clause and so we would be executing line four and saying that there is no truth 

assignment. So, that is not very surprising the surprising part comes when we have a 

satisfying assignment. If such satisfying assignment exists satisfying truth assignment 

will be reported with probability at least 1 minus 2 raise to the minus m and here m is an 

arbitrary numbers. So, you will notice that you can make this probability arbitrarily close 

to 1 and it of course approaches 1 exponentially fast in m. So, this seems surprises. 

Let us actually try to figure out, why this is the case and for this we need to build a little 

bit of theory and this where it could help for us to understand this random process. So, let 

us start by defining a stochastic process is nothing, but a collection of a random variables 

and these random variables are parametrized by this parameter t, and the most useful way 

to interpret this parameter t is time. So, this variable therefore, can be thought of as the 

way a random variable changes over time and if this random variable x takes finite or 

countably infinite number of values then it is called a discrete space stochastic process. 

Now, these values that x can take are often called the states of the process. So, you can 

think of this process as going from 1 state to another state to another state all over time, 



and we are most often interested in processes where the state space is discrete meaning it 

is finite or countably infinite and of course, the parameter t are also is often finite and or 

countably infinite and such processes, we call the discrete time stochastic processes and 

so we can interpret x t as the state at time t. Of course, our primary focus will be on 

discrete time and discrete space stochastic processes and t takes integral values starting 

from typically t equal to 0 to t to the 1 and so on. 
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We are interested in a discrete time and discrete space stochastic process that has an 

interesting memory less property and here is what that property is, let suppose we are 

interested in the event that the state of the process is at a t a time t. Well, how could that 

have reached that state well, obviously, depends on the past history and of course, if it 

might depend on the entire past history. So, that is this probability stated here and this is 

it is entire history. 

Now, if this stochastic process was memory less in this probability condition on the 

entire history would end up being the probability that the state would be at a t th time t 

given only that is previous state and that is sufficient that x t minus 1 equals a t minus 1. 

So, the probability that the current state is a t only depends on where the process was in 

the previous time stamp and the history beyond that is has no bearing at all and therefore, 

the transition probability transitions. So, since they do not have any, since the history 

does not have beyond that 1 previous step does not have any bearing this probability get 



simply be written as P a t minus 1 to a t. 

Because if you are at a t minus 1 at time t minus 1 then with this probability will be at 

state a t at time t and such a stochastic process that has this memory (Refer Time: 11:28) 

that forgets this past history beyond just the 1 previous step is called a Markov chain and 

these are very, very elegant and useful because they well the model a lot of real world 

processes and they are also elegant and easy to analyze and end up being quite useful for 

many algorithmic purposes. So, this probability P a t minus 1 to a t is called transition 

probability; basically, the probability that if you are at state a t minus 1, then you will 

move to the state a t with this probability. 
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Let us now consider the Markov chain with a finite state space. In particular, let us say 

that it has n states and their number from 1 to n then it is probability it is transition 

probabilities can be captured by transition matrix in which is an n by n matrix. If you 

look at the entry i comma j it is a probability and denotes the probability that you would 

reach state j in 1 step given that your previous step was state i. So, let us denote the 

probability distribution over the state space by this vector of probabilities and here p 0 of 

t is the probability that the Markov chain will be at state 0 at a time step t state 1 at time 

step t and so on up to state n at time step t. 
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Notice that when you multiply the vector the distribution vector with the transition 

matrix, we are going to get the distribution vector at time t plus 1, we can extend this 

further. So, the m step transition probability from i to j is defined as follows. Now, 

suppose you are at state i at sometime t, this m step transition probability gives you the 

probability that at times t plus m you will be at state j. So, it is the probability that the 

Markov chain will move from state i to state j in exactly m steps and so this, let us 

consider the matrix whose entries are these m step transition probabilities and we are 

going to denote by p superscript m within precise. 

Now, using the fact that if you take the current probability distribution and multiply it 

with the transition matrix, you will get the probability distribution at time t plus 1; using 

this formula a good exercise to be to show that this transition matrix whose entries of the 

m step transition probabilities can be obtained simply by taking the transition matrix and 

raising into the power m quite naturally as a consequence. If you take the probability 

distribution sometime t and multiply it with the truth transition matrix raise to the power 

m you will get the distribution probability distribution at time t plus m. 

So, let us quickly recap we define what we call a stochastic process it is basically of 

course, we are interested in discrete time state space stochastic processes. So, you can 

interpret this as a random variable that takes various states through time and we are 

particularly interested in Markov chains, which are stochastic processes that exhibit the 



memory lessness property. So, there is a clear probability with which you transition from 

1 state to another and you can also make these large m step transitions, well eventually 

they are just the probably transition matrix raise to the power m. 

So, you can view this m step transition probabilities themselves as the sort of a Markov 

process. So, notice that the key thing here is in general going from 1 state to another and 

the transition probabilities provide you the probabilities with which you go from 1 state 

to another and so, quite naturally we can view this whole Markov chain, we can we can 

view a Markov chain as a graph. 
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So, quick exercise for you would be to think of Markov chains and think about how we 

can use graphs to represent Markov chains. So, for example, what will be the vertices of 

course, this is not a rocket science, it is your vertices are going to be the set of states that 

the Markov chain can take and, is this graph that represents the Markov chain going to be 

directed or undirected? Well, typically it is going to be directed because the probability 

of going from 1 state to another need not be the probability with which you return, come 

back from the other state back to the original state and therefore, you may want to 

distinguish the directions. 

So, you probably want a directed graph and will it be weighted? Yes, because you 

probably want to capture the probability the transition probabilities are using weights and 

what can you say about the weights of edges going out of a vertex well notice that these 



are probabilities.  

So, they will have to sum to 1, on a similar wing what can we say about the probabilities 

or rather the weights of edges that are entering into a vertex, will they also add up to 1? 

Think about it, here they do not have to add up to 1 because you could be entering into a 

vertex from a variety of different other states of vertices and there is no reason for the 

weights on the incoming edges to add up to 1 and of course, can the graph have self 

loops? Yes, because with there is nothing that says that the Markov chain should 

necessarily move to another state at each time step there you could have nonzero 

probability with which the Markov chain remains in it is current state and these can be 

normal using a self loops. 
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Essentially, this Markov chain can be viewed as drunkard taking random walk on this on 

this graph and if he is add a node in the graph then he will move to a neighboring node in 

to the probabilities the weights on the outgoing edges. 
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So, here is the simple warm up, let us consider a Markov chain in which the states can be 

arranged. So, if the state range from 0 to n and they are arranged in a linear fashions 

starting from 0 here to n over here, and if you notice at any intermediate state with 

probability have you move it forward. So, for example, if you are at state j you will go to 

state j plus 1 with probability half and with state and with probability half you move to 

state j minus 1. 

So, an interesting question that we can ask is, how long does the drunkard take to go 

from one end of this Markov chain to the others? So, let say he starts at state 0, how long 

does he take to reach state n and this question turns out to be quite interesting also quite 

useful. 
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Let us use the random variables z j to denote the number of steps that the drunkard will 

have to take these random steps, to reach a state m having started at state j. Of course, if 

we since it are going to be doing random walk he could also be moving sometimes it will 

be moving backwards sometimes it will be moving forwards. So, we want to know how 

long it will take before he reaches n, and we use h j to denote the expected value of z j 

and we are particularly interested in h 0, which is the expected number of steps that this 

drunkard will take to reach n having started at the very end very, very extreme other end 

it starts at the state 0. So, if you consider any intermediate state j, let us look at h j, from 

state j there are 2 possibilities with probability half, we can go to state j plus 1. 

So, with probability half we make 1 step go to state j plus 1 and then you can simply 

count the number of steps to go to state n from j plus 1. So, this is the probability half 

and with that probability half, we make that 1 set to j plus 1 not this 1 over here and then 

having reached j plus 1, we are going to take z j plus 1 number of steps to reach state n. 

So, this is you counted for half of the probability. 

Now, with the other half of the probability we are going to move to state to j minus the 

one. So, that is the other half and we are spending that 1 step moving to j minus 1 and 

having move to j minus 1 will spend z j minus 1 number of steps to make our way to 

state n. So, h j can be written as the expectation of these 2 random variables waited in 

this manner. So, with the probability half you use that 1 step going to j plus 1 plus the 



time goes it takes to go from j plus 1 to n and the probability half you take 1 step to state 

j minus 1 and then the amount of time it takes to reach state m and the expectation of 

these 2 possibilities is going to be h j and of course, this can be expanded out to h j minus 

1 divided by 2 plus h j plus 1 divided by 2 plus 1. 

So, that is the quick exercise for you to figure that out and of course, if you are at state 0 

you really cannot go to state negative one there is no such state in this particular Markov 

chain. So, the only option you have is to spend the one time step going to state 1 and 

from there h 1 captures the time it takes to the expected time takes to reach the state n. 

So, that is one of the base cases and the other base case is h n if you have already reached 

state n then you are already there as a 0 time steps you will reach a state n. So, h n is 

equal to 0. Now, what we have is a system of linear equations. So, we have h j is for 

intermediate values of j and h 0 and h n. 
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And a simple exercise for you using induction would be to prove that h j for j ranging 

from 0 to up to n minus 1 equals h j plus 1 plus 2 j plus 1. So, this is basically as the 

solution to this equations using simple reduction and applying the base case, we can 

actually work out the probability or rather we can work out the expected number of steps 

that the drunkard will take to reach state n having started at state 0 that is our h 0, well 

we know that h 0 equal to h 1 plus 1, but applying this formula inductively h 1 evaluates 

to h 2 plus 2 plus 1 and so on. 



If we work our way we end up with h 0 equaling n square. So, what this says is if you 

start at state 0 and make these random walk transitions, you will reach state n in an 

expected n squared steps. So, this is quite interesting, but why is it useful? Well, let us go 

back to an algorithm that we looked at for 2 SAT. 
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So, we have the input 2 CNF formula with on n invariables. We started off with an 

arbitrary truth assignment and we iterated up to 2 m n squared times or until we found a 

satisfying truth assignment, and every time we can find truth assignment we picked an 

arbitrary clause and randomly pick 1 of the variables and plug it only, we kept doing this 

process until we either found the truth assignment within 2 m n squared time steps or we 

just declare that. 
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There is no satisfying truth assignment and we claimed that this algorithm, if it has the 

satisfying, if the input formula has a satisfying assignment will find that satisfying truth 

assignment with overwhelmingly large probability. So, basically probability of 1 minus 2 

raises to the minus m and why is it truth? What is going to quickly sketch the proof and 

will see how Markov chains are useful in this process. 

So, assume I mean, notice that if the formula is not satisfiable then the algorithm is 

always going to be correct. It is always going to say well there is no truth assignment. 

So, we are only interested in the case where there is a satisfying truth assignment and So, 

let us just pick 1 such satisfiable truth assignment let us call that t and let us look at the 

execution of this algorithm at some point in time, and if you consider any unsatisfied 

clause at least 1 of it is variables does not match t and this is quite obvious if why is that 

well, let us look at an unsatisfying clause of the form, let say x j or x i and if the let say 

both x j and x i match the truth assignments they have in t well then this clause will be a 

satisfying clause. 

So, both of them cannot be matching their assignments in t. So, at least 1 of them will 

have to be different from their truth value in t well. So, this is not very surprising, but 

why is this important and why this is useful? Well, it is very useful because now we can 

say that if we choose such an unsatisfying clause which is what the algorithm does and 

chooses this 1 of these unsatisfying clauses and fix 1 of these variables uniformly at 



random and flips their value. 

So, if let say x i is the variable whose truth assignment current truth assignment does not 

match t then it probability half, we are going to be flipping x i’s value and. So, with that 

probability half, we are going to move the truth the current truth assignment 1 step closer 

to t of course, it is also possible that you know both x i and x j are different from their 

assignments correct assignments are different from the assignment in t in which case the 

this probability actually because 1 regardless of which variable we choose we are going 

to get closer to t and so that is why this probability to the truth assignment is closer to t 

after lying to be that is this line to be in the algorithm where we pick a variable 

uniformly at random and flip it. So, the probability that truth assignment gets closer to t 

after line 2 b is greater than or equal to half. 
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Now, let us try to take insight and frame this into a notion that we know, basically a 

random walk in along the way what we are going to do is we are going to make some 

simplifying assumptions, but we are always going to make pessimistic assumptions. So, 

that whatever claim we have at the end is going to only be worse than the actual truth. 
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So, let x i denote the total number of variables in the truth assignment after the ith the 

iterations that match t basically why do we need this x i because we want to be able to 

capture how close we are to matching t completely. So, at time step i, x i denotes the 

number of variables in which our current truth assignment matches the assignment t. We 

have already seen that the algorithm will move 1 step closer to t with probability greater 

than or equal to half. 

So, we are going to modify this just a little bit. So, we are going to be a bit pessimistic 

about setting up the random walk. Let us assume that x i minus 1 equal to j. In other 

words, at time step i minus 1, we have j matches with the truth assignment t. Now, what 

is the probability that x i equals j plus 1 we are going to assume that is half and what is 

the probability that x i equals j minus 1 and it is also equal to half. So, from state you can 

pick up this as random walk in which with from j with probability half we go to j plus 1 

with probability half we go to j minus 1 and this extends for all j. So, with probability 

half we will go from j minus 1 to j with probably half or j to j j plus 1 to j, 1 and so on. 

So, this exactly matches the random walk on a line that we have already seen before. 

So, what we know is that this pessimistic Markov chain is actually terminates in n square 

steps on expectation. So, this is what we are going to use crucially to prove that the 

algorithm. In fact, finds the satisfying truth assignment with such overwhelming the high 

probability. So, that is the simple exercise for you. So, you basically have to use the 



Markov inequality to prove that the probability with which the algorithm does not find 

the truth assignment after 2 n n square steps is at most half and then when we repeated n 

times we can reduce this probability down to 2 raise to the minus m which gives us the 

result that we need want. 

So, before we conclude I would like to point out one thing, why is it that we are not 

using this probability? Instead we are going to choosing a more pessimistic option, well 

as it turns out if we view this stochastic process using the actual probabilities they are not 

it is not a Markov chain the probability with which we transition to a particular state with 

certain number of matches with the truth assignment t may depend on many historical 

facts. So, we do not want to; we simply do not have the tools to analyze it as elegantly as 

we can if we view this process as a Markov process Markov chain. 

So, that is the reason why we are being a bit pessimistic, but in return we are getting the 

argument to form that we can analyze more elegantly. 
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So, that brings us to the end of our discussion on Markov chains at least the first segment 

and we will be talking little bit more about Markov chains in subsequent segments, and 

hopefully we will also get to the point, where we discuss a big data application that uses. 


