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We have already seen what Markov chains are, and we have seen how they can be useful 

in the context of algorithms. And in particular, we saw how they were useful in 

analyzing very simple randomize algorithm for (Refer Time: 00:31) problem.  

In general, Markov chains are interesting because they help us understand how to 

explore a maze using simple probabilistic rules, and that is what a appealing about them. 

And in this sense, a Markov chain is pleasing if it gives you way to explore the entire 

maze the word for it usually is the entire state space. And this it is a very natural way to 

explore it and it is somehow very appealing and turns out to be very, very useful. But it 

is not just about exploring because if it is a exploring the classic (Refer Time: 01:22), 

these do a perfectly fine job as well if you think of the maze is a graph.  

So, there is something more to it. Markov chains have this ability to explore the graph in 

a variety of ways; it is not just about exploring, but how you explore that makes it a kind 

of exciting. So, in this sense, we are interested in Markov chains at that explore the 

maze, but not in some rigid fashion, but in some sort of a natural way and kind of not 



falling into parents, but exploring the state space in a variety of ways, so that is what is 

very appealing about Markov chains. And the rules that drive them are simple 

probabilistic transition rules; so it is very appealing.  

And in order with this sort of a philosophy, behind which these Markov chains are 

designed, let us try to understand them a little bit more carefully. And for that purpose 

we are going to understand how the states are classified; and when you classify the 

states, we are also going to classify Markov chains and we are going to bring out some 

properties that make a Markov chains more interesting than others. 

At this point, in our exploration, we are kind of thinking of the Markov chains is being 

interesting appealing and so on and so forth. Eventually, we will also get to a point 

where these Markov chains are not just interesting from a hypothetical standpoint, but 

also useful for in some concrete context. One thing to bear with is that we are going to go 

through a series of definitions, but keep this philosophy of Markov chains in the back of 

your mind, so that these are not just a sequence of definitions. But there is some method 

to this (Refer Time: 03:28) some underlying perspective that guides us in setting up these 

definitions the way they are. 
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Just to remind ourselves, we are interested in time homogeneous, discrete space discrete 

time Markov chains. During this lecture, when we talk about a Markov chain, this is the 

type of Markov chain that we are referring to and sometimes just shorten it to MC. 
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And also to remind ourselves a Markov chain can be represented as a graph in which the 

nodes or the states of the Markov chain and the edges are directed and positively 

weighted and those positive weights can be thought of as probabilities. So, if you add up 

the weights of the edges going out of a state, it has to be one.  

And just to be clear sometimes you may not have any outgoing edge explicitly 

mentioned in the those states are called absorbing states; and essentially once a Markov 

chain reaches such a state, it is never going to leave that state. So, one way to think of it 

is these are states that have a self loop where the out edge the (Refer Time: 05:03) can be 

thought of as the out edge with probability one. 
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And throughout this discussion, we are going to go back and forth between the classic 

Markov chain terminology and the graph theoretic terminology. And for many of us 

including myself the graph theoretic terminology comes quite a bit more naturally than 

the Markov chain terminology, but they are fairly twine with each other.  

And so the point of view of gaining a better intuition about what is going on it is better to 

keep the better to relate Markov chains and graph theory the underlying graph theory 

perspective and keep going back and forth so that it reinforces our intuition. Two states i 

and j are said to communicate with each other, if they are both reachable from the other. 

This is a Markov chain definition, but there is a very easy and clear way to understand 

this from the perspective of a graph theory.  
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Remember the graph that represents a Markov chain well those two states that can 

communicate with each other essentially two nodes such that there is a path from a node 

say i to node j and also there is another path from node j to node i. So, this is what we 

mean by to communicating states of Markov chain, essentially they are connected at the 

in the underlying graph representation. With our goal of understanding Markov chains as 

tools to explore a space of states. 
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Let us ask a question. When are we guaranteed to be able to explore all the states? Since, 

the graph is directed; it is easy to construct Markov chains such that some states simply 

do not get explored and depending on where you start and so on and so forth. So, those 

Markov chains in some sense are well at least less interesting because you kind of miss 

part the graph. So, this leads us to the definition of an irreducible Markov chain and as 

one in which every pair of states can communicate with each other, and this corresponds 

to a graph that is strongly connected. So, from any state, you can reach another state and 

vice versa. So, irreducible Markov chain simply a Markov chain whose underlying graph 

representation is strongly connected. 
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Let us ask our second question. Just to give some importance to Markov chains are a not 

irreducible. If an MC is not irreducible, which states will be visited repeatedly; in other 

words, are there some stage that will be visited once and may be once or twice and then 

you somehow stop visiting them is that a possibility. Well, of course, yes, if you have a 

directed graph, so let us make ourselves an example here, you will have to make up the 

transition probabilities, but well, let us see something like this. If you start at either state 

a or state b, you might be going back and forth a little bit, but once you go to state C, 

well C is an absorbing state, and there is no hope of coming back to A or B. 

So, let us explore this ideal bit further. Let us consider a Markov chain in some state i, 

we will call that state i recurrence state if the probability that the Markov chain will 



return to i eventually is 1. So, in this simple example, once you go from A to C then 

there is no hope of returning back to A. So, if you are at state A, there is a certain 

probability with which you will never return back to A. So, then A is not a recurrence 

state; however, C is a recurrence state, because if you are at c, eventually you are going 

to come back to C.  

In this case, in fact, you will be at C at every time step, but you can design more 

interesting Markov chains where you can come up with states, so that you keep on 

returning back to that those are called recurrence states. Otherwise, they are called 

transient states because well the Markov chain may go through it, but it may not it may it 

may go into another part of the Markov chain from where it will never return back to 

(Refer Time: 10:25) such states are called transient. So, in this case, A and B are called 

transient states. 
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So, from a graph theory point of view, the question is what states are recurrent, and what 

states are transient. Think about this a little bit carefully, you may want to pause for little 

while, and answer this question to yourself (Refer Time: 10:48) because this will ensure 

that you, your intuition is going in the right direction. So, the questions clear if you are 

given a graph theoretic representation of a Markov chain, how do you figure out which 

states are recurrent and which states are transient. 
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Let us use the notation h i comma j to denote the expected time to reach a state j starting 

at state i. So, the question to ponder is suppose you are at state i, how long does it take 

for you to get back to i. Remember we are talking about recurrent states, how long does 

it take for you to get back, and what is it on expectation, so that is this h i i. Can this h i i 

be less than infinite; of course that is quite possible; in such cases those recurrent states 

are called positive recurrent.  

Interestingly, there are also examples where a state is recurrent, but it is not positively 

recurrent meaning the h i i is actually infinite. So, if you want to pause and think about 

when such a situation like that arise, and such states are called null recurrent. So, when h 

i i is strictly less than infinity then the state i is called a positive recurrent. So, your task 

is to describe of a Markov chain that has a null recurrent state. So, this might require you 

to think about an a little bit. 
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One more exercise, consider a finite Markov chain, now prove that this finite Markov 

chain has at least one recurrent state, prove that all the recurrent states are actually 

positive recurrent. In other words, a finite state of Markov chain cannot have null 

recurrent states. So, this actually works this exercise works as a goal to answering the 

previous question. 

(Refer Slide Time: 13:30) 

 

Recall that we are not just interested in how many what states can be explored and what 

states are not explored, we are also interested in ensuring that the Markov chain has 



interesting ways of exploring the state space. And in this sense, we want to avoid some 

rigid patterns and we are interested in Markov chains that have a nice fluid way of 

exploring all the states. So, from this point of view, we are going to study a notion called 

periodicity. A state j is said to be periodic, if there exist a period delta which is a an 

integer strictly larger than 1, such that if the probability given that you were at j at time t 

that you would be at j again at time t plus s is greater than 0 then this s is divisible by 

delta. 

So, let us see if we can get a picture. So, we are talking about a state j, and we are at state 

j at some time t. And we are considering all future possible revisits of j, and those are at 

time say t plus s. And the only way you can have this probability of returning to j at 

some time t plus s is greater than 0, is that this s is divisible by delta.  

In other words, if you think of the timeline starting from t, the only possible points in 

time that you are likely to visit the state j again are all multiples of delta. And this kind of 

if you pause and make sure you understand the definition you will realize that there is 

some rigid pattern by which you are revisiting the state i state j. So, then the state j would 

be called a periodic state. If such rigid patterns are avoided then the state j is called a 

periodic. And a Markov chain is periodic if any state is periodic. So, the moment you 

have one state as periodic then the whole Markov chain is said to be periodic; otherwise, 

we call the Markov chain, aperiodic Markov chain. 
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So, let us look couple of exercises. First, design a Markov chain that has periodic as well 

as aperiodic state. So, think about it carefully and come up with a Markov chain basically 

a directed graph with appropriate weights, such that it some states are periodic, while 

others are aperiodic. 
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And another question, consider an irreducible Markov chain, basically this is a strongly 

connected graph, can such an irreducible Markov chain have a mix of both periodic and 

aperiodic states? So, think about it, and make a claim, and prove your answer. 
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So, remember we are interested in recurrent states because well the Markov chain is 

likely to keep visiting them over and over again, but we do not want them to be visited in 

some rigid fashion and such states that are aperiodic, but positive recurrent are called 

ergodic states. And if all states in a Markov chain are ergodic, then the Markov chain 

itself is called ergodic. So, here is an exercise for you, prove there are Markov chain that 

is finite, irreducible and aperiodic is an ergodic Markov chain. If you think about it, you 

have actually already proved it in a previous exercise, so that will be the clue.  

And with that, we end the segment on the classification of states in a Markov chain. 


