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In the previous segments, we looked at the definition of Markov chains, and we looked at 

the notion of what makes some Markov chains more interesting than others, and we 

classified the states of a Markov chain, and generally built an understanding of Markov 

chains.  

In today’s lecture segment, we are going to little deeper, we are going to also look at an 

application; and inspired by that application we are going to study the notion of 

stationary distribution of a Markov chains. So, let us start by looking at this application. 

One of the key things about big data is that the data changes over time. the data is never 

static and it keeps changing over time in after in a fairly slow manner. 
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And let us look at a concrete example. Let us look at the list of celebrities, and this list is 

ordered by popularity. So, number 1 is the most popular celebrity, number 2 is the 

second most popular celebrity and so on and so forth. And this list is not static, I mean 

this list has I mean at any point in time such a list exists, but obviously the list way back 

and say 1950, it is going to be very different from the list that we have in 2016. So, this 

the list keeps changing over time.  

So, for our purposes, we are going to look at this list in this formal sense, we have a list 

of celebrities ordered by their popularities, and some phenomenon - natural phenomenon 

takes place may be a hit movie or hit song or scandal or whatever changes the ordering 

of the popularity of the celebrities. And how do we model that we allow the basically a 

random consecutive pair is chosen uniformly of random, and the more popular of the two 

will be made the less popular one and the less popular would be made the more popular, 

so basically swapping their popularities. And this phenomenon can so this process itself 

is a random process and overtime the list of the popularity or a list keeps changing. 
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And we given such a changing list we are interested in maintaining the most popular 

celebrity and we want to do this without extending too much effort into it. So, here is 

very simple algorithm for it. And any point in time just maintain the most popular 

celebrity that you have currently seen so far, and you randomly probe a new celebrity, 

and check if this new celebrity that you have probed randomly is more popular than the 

celebrity C or not. And if the new probe celebrity is more popular then you update C that 

is it.  

So, very simple natural algorithm, it is a perfect algorithm that can just run in the 

background. And eventually we hope to be able to report a celebrity that is fairly popular 

I mean the celebrity this due to the dynamic nature, we may not always report the most 

popular celebrity, because the moment you the most the current celebrity see that you 

have even if he or she is the most popular one due to dynamism can move down the list 

and by the time you correct yourself it is going to take some time. So, we cannot 

guarantee that we are always going to be reporting the most popular celebrity or we 

would not be at able to report a fairly high popular highly popular celebrity. So, we want 

to characterize how good this algorithm in that sense. 
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Well in order to do that we need to build an understanding of the theory of stationary 

distribution so that is what we are going to do now. Recall that we used to prop the 

notation P to denote the one-step transition matrix. And what is a stationary distribution, 

it is basically a probability distribution given by pi 0, pi 1 and so on up to pi n over the 

set of states in the Markov chain that obeys a condition.  

What is that condition pi equals pi times P? So, notice you can you can think of this a 

distribution as a state in which the Markov chain will be infinitely far out into the future 

in some once (Refer Time: 05:33) some steady state. So, if the Markov chain is going to 

be in its state, so in one of the state 0 to n in accordance to this probability distribution 

then it will continue to be in one of the states according to this probability distribution. 

So, at some sort of a steady state behavior of the Markov chain and that is usually what 

we are interested in the context of Markov chains; we are interested in the steady state 

behavior of the Markov chains. 

Here is a point in time we should take a few moments to design a simple Markov chain 

with multiple stationary distributions. And if it means that you need to pause for a few 

minutes please do that, but think about it carefully and design Markov chain with 

multiple stationary distributions. But eventually our interest is going to be finite 

irreducible and ergodic Markov chains, but do not worry about that you just need to 

design a Markov chain that is has that has multiple stationary distributions. 
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Let us now look at the fundamental theorem of Markov chains. And since we are 

interested in finite irreducible an ergodic Markov change that is what this theorem is 

going to talk about. And such Markov chains have a unique stationary distribution. So, if 

it has to be unique that means essentially the history is forgotten whatever be the way the 

Markov chain starts eventually it is going to reach a steady state, where the distribution 

is going to be the same, it cannot lead to multiple different distributions. It can only lead 

to one unique stationary distribution, so that is very important. 

And. Secondly, the theorem states that well let us for remind ourselves what a piece of 

subscript j comma i superscript t is. It is the probability that a Markov chain that is 

currently in state j will be in state i after t steps. So, it is currently at state j, and after 

these t steps, the probability that the Markov chain will be in state i is this p j comma i 

superscript t and we are interested in that probability with t tending to infinity. And this 

theorem states that the probability exists and moreover it is independent of j, so this little 

j really does not matter regardless the way you start as t tends to infinity this probability 

is going to converge to same value. 

And finally, lets remind ourselves what h i i is, h i i is the expected number of steps for a 

Markov chain at state i to return to state i. So, your state i, how long does it take to you 

know take a walk, but then return back to i. And that is if you would look at 1 over h i i, 

it gives you a sense of how frequently you will be coming back to state i. And quite 



 

 

naturally that frequency is exactly equal to this limiting probability as t tends to infinity 

that p j comma i superscript t and that is exactly our pi i, the probability with which at 

steady state the Markov chain will be at state i. So, this is our fundamental theorem of 

Markov chains, take a few minutes to pause and make sure you understand the 

statements. The proof was also present in the textbook, but we are going to skip it for the 

purpose of our lecture. 
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And just to reinforce our intuition, let us to make a few nice observations. Notice first 

that is the Markov chain for a finite irreducible and ergodic Markov chain, the stationary 

distribution is going to be such that no part of the maze is going to be left unexplored, 

every state is going be explored. So, all the pi i(s) are going to be strictly positive. And 

there is going be a unique steady state behavior initial conditions are forgotten. So, it 

does not matter with how you start eventually the Markov chains going to end up in a 

steady state behavior. And there is a nice clean intuitive relationship between a pi i and h 

i i, so that is pi i equals 1 over h i i. 
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Now, that we know what a steady state or what a stationary distribution is, and we are 

now interested in computing the stationary distribution, and so we have several ways to 

do that. The most obvious way is to simply solve a system of linear equations directly 

falling out of the definition of stationary distribution. So, a particular vector pi would be 

the stationary distribution if and only if it obeys this equality pi equals pi times p. And 

you have also one more equation since this pi is a probability distribution if we add up 

the components it has to add up to 1, so you get that is 1. So, that is just solving this 

system of linear equation, which is going to give you a way to solve value for pi, but this 

is not very feasible if the number of states in the Markov chain is very large.  
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So, there is probably more intuitive ways to do that and one of them is the Cutsets 

method. So, let us warm up first, consider a very, very simple, but nevertheless very 

useful Markov chain. So, it simply has just two states 0 and 1. And with probability you 

p go from 0 to 1, and with probability q you go from 1 to 0. And these Markov chains 

these simple Markov chain can be used to moral a variety of things, where there is two 

states say good behavior and a bad behavior what is the probabilities. So, you may be 

interested in understanding what the probability is that you are going to be in the good 

state versus the bad state and these as you can see naturally leads us to the notion of 

stationary distribution. So, we are interested in understanding the stationary distribution 

or the steady state behavior of this Markov chain. So, there is a very clean intuition 

behind this Markov chain. 

So, let us just consider the cut dividing state 0 and state 1. The frequency with which the 

stationary distribution moves from state 0 to state 1 must be equal to the state at the 

frequency with which it moves from 1 to 0. And this is some sort of a law of 

conservation of Markov chains, if you will making that up, but gives you some notion 

that you know you really cannot lose the Markov chain when it goes from one side to the 

other. So, if goes from one side to the other it has to come back from the other side back 

to the former side and so on and so forth. And we can use that to actually compute the 

stationary distribution. So, here is how to do that. 
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This notion of the frequency with which the Markov chain goes from left to right, and 

right to left is can be captured by pi 0 times p. Pi 0 is the probability with which the 

Markov chain is going to be at state 0. And given there is a state 0, it will actually move 

to the other side of the cut with probability p and vice versa pi 1 times q and these 2 are 

equal according to our intuition, so great. So, we have one equation. And the other 

equation of course, we can always resort to summing up the probabilities in the 

distribution it has to add up to over 1. And if we solve them we get pi 0 is q over p plus q 

and pi 1 is p over p plus q. So, as you can see we now have a handle on the stationary 

distribution of this simple, but nevertheless is very useful Markov chain. 
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And this notion can be generalized to Markov chains with a more complex structure. We 

will see one such Markov chain in the subsequent segment. The third technique to 

compute the stationary distribution applies only to time reversible Markov chains. A 

Markov chain is said to be time reversible, if for every pair of states i and j, this equation 

holds pi i times the probability of transition from i to j equals pi j times their probability 

of transition from j to i. And why this is called time reversible, well we are going to have 

an exercise problem dedicated to gaining and understanding of why this is called time 

reversible. So, for now let us just keep this definition did not mind. 

And let us look at a theorem now the theorem does not depend as far as the statement 

goes does not depend on time reversibility, but as you can see this theorem will only be 

applicable when the Markov chain happens to be time reversible. If you can guess a 

vector, it is pi 0 pi 1 up to pi and so and you want to your hope to this guess is going to 

be the standard deviation, sorry this guess is going to be the stationary distribution. And 

if you can furthermore show that for all pairs i and j pi i times p i j equals pi j times p j i 

then the guesses in fact, a stationary distribution.  

And of course, you also want the summation overall i pi i(s) equal to 1. And if this is sort 

of a guess and check technique for computing the stationary distribution of a time 

reversible Markov chain. So, we would now built sufficient ideas about stationary 

distribution in Markov chains and so on and so forth.  



 

 

What we are going to do in the next segment is we are going to go back to the problem 

that we talked about at the start of the segment. And we are going to revisit that problem 

and we are going to gain an understanding of how good a celebrity, we will be or that 

simple algorithm will be outputting. And we will in that process exercise several notions 

of Markov chains in stationary distributions. 


