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In this last segment, we are going to talk about random walks on undirected graphs. And 

to motivate this problem, we are going to talk about the s-t connectivity problem. 
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And this problem consider a very large graph G, it is undirected and unweighted; this 

graph has N vertices N is large. So, the classic big data problem, it also has lot of 

interesting implication of square, but let us focus on the big data aspect. You given a 

source vertex s and also sink vertex t.  

Now, we do not know this graph is connected and particular we do not know whether 

there is a path between s and t and that is the question we are interested in. We want to 

know there is a path between s and t. This is not very difficult. We walked into through 

some fall of algorithms course, and you studied BFS DFS, so it is easy to solve, but the 

big data context comes from the fact that you are not allowed to use lot of space. Now if 

you were to use BFS, you will need to have a queue of up to theta of N size. Similarly, 

even if it is DFS, you will need to have a stack of theta of n size, and either of these is 

unacceptable. And therefore, we need a solution that takes a very little space. 

(Refer Slide Time: 01:51) 

 

And as I looked into this problem has a very interesting complexly theory implications. 

In particular, the question of whether a symmetric, non-deterministic log space 

computation equals deterministic log space computation. This was a big open question 

that got result in mid 2000 (Refer Time: 02:14) to Omer Reingold. So, this is a very 

famous paper, but this talks about a deterministic solution and a sort of very practical 

solution to implemented in real world application. And so, we are more interested in a 

solution that is easy to implement easy to analyze and easy to appreciate. 
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So, we are interested in a random walk space solution. What is a random walk? At each 

time step, think about a particle or token that is at some vertex, at each time step, this 

token takes random walk step. That means is from current location, let us say let us call 

that v, it chooses one of the d v neighbours of v uniformly at random, and moves to that 

neighbor. And each step is independent of previous steps that it took. So, it only depends 

on where its current location is and that will and from there one of the neighbors chosen 

uniformly random. And so, what we do is simple. We start a random walk from s and we 

allow it to walk for some number of steps, and hope that it will reach t. 

So, of course, if it reaches t then; that means, s and t are connected. But if it is does not 

reach t, that mean s and t are not connected; it might just have be the case that it this 

random walk just somehow avoided t. And so, we need to be concern about that we need 

to understand, what will happen. And from your previous lectures, where we talked 

about finite irreducible and ergodic Markov Chain, you probably have some that it would 

not miss some part of the maze.  

But the problem is how long does it take to actually cover the entire maze that is 

important, because that tells you that if you walk that long and still do not see t then s 

and t probably are not connected, so that is the intuition that we are going to work with. 

So, we want to find that amount of time, which that random walk should walk before we 

can safely conclude, whether s and t are connected or not. And it is turns out that number 



of steps is 4 m n cubed in order to get a confidence of 1 minus 2 raise to the minus m, but 

why is that well that is what we are going to delve into in this segment. 
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And just to incase you missed this point, notice that the position of the token can be 

thought of a Markov chain. So, the position is a vertex. So, the Markov chain has N 

states basically called each states corresponding to some vertex in which that token is 

present. And let us start delving into these notional random walks. Let us look at the first 

lemma here. A random walk on an undirected connected graph G is aperiodic, if and 

only if G is not bipartite. So, in other words, the graphs are not bipartite or more 

interesting in if you care for a periodicity. 
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Let us see how this lemma can be proved, so this is if and only if statement. So, the proof 

as gone two directions, the first direction that we are going to prove is aperiodic implies 

not bipartite or equivalently let us look at the (Refer Time: 06:31) bipartite implies 

periodic. This is very easy to see, because if it is bipartite then what happens is there are 

two parts to the graph and the random walk will stay at one side during odd times and 

other side during even times. So, it is quite easy to see that bipartite graph is going to 

random walk bipartite graph is going to be periodic. So, the forward direction is proved 

that way. 
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What about the reverse direction, well this one, we need to show that a graph that is not 

bipartite random walk on that such a graph will be aperiodic. An odd graph that is not 

bipartite is must have an odd cycle. And if there is an odd cycle what that means, is that 

you can always go from 1 vertex, you can find the way, so when the graph is connected, 

you can find the way to take a walk from vertex, and then return to it after an odd 

number of steps. And of course, you can also do even number of steps, you can just go 

back and forth between nodes and its neighbor. So, combining these two, you can mix 

and match them and create walks of any length beyond the certain threshold. 
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And this is the crucial idea by which we can establish that with some nonzero 

probability, you can actually go from any vertex to another vertex at variety of different 

time steps. In another words, such a random walk will be aperiodic, so that is the 

intuition. This is not complete proof, but I want to leave you with an intuition of why this 

statement holds. 
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So, from rest of the segment, let us keep things interesting, we have been interested 

primarily in aperiodic Markov chains. So, we are going to assume that G is not bipartite. 

So this means that the random walk on such a graph is going to be aperiodic. 
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Now, let us look at stationary distribution of a random walk on a non-bipartite connected 

graph. Claim is that the component associated with the vertex v is given by d v over 2 

times number of edges. Why is this, first for we need to show that this stationary this is 



first of all distribution, this vector of numbers quantities is first of all distribution, we 

need to show that. These quantities are going to be between 0 and 1 that is clear. 
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What we need to show is add up to 1, well let us see, how that is going to work now. If 

you sum up the degrees that going to equal two times the number of edges. So if you 

rearrange, you are going to get d v over to E summed over all (Refer Time: 10:26) we 

going to add up to 1. So, d v over E is nothing but the component associated v, and so 

this is exactly what we want.  
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So, we know that this vector of numbers is a probability distribution. 
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Now, we need to show that this equation holds; this probability distribution vector times 

the transaction matrix will give you back the probability distribution vector that is what 

needs to be shown. Let us look at this equation from the perspective of a single vertex, so 

that is pi v, when you apply this matrix, when you multiply by this matrix. What is that 

mean? Well, the pi v is, look at the vertex v, its neighborhood these are neighboring 

vertices and that is denoted by N v.  

In order to get this component pi v, what we have to do is sum over all the neighbors of 

p, and take their corresponding vector components times the probability with which a 

random walk token from 1 of this neighbors say u will move to v and that is this quality 

1 by d u. Why is that, if you look at the vertex u there are d u neighbors, and each one of 

them chosen equal likely. So, the probability there are random walk token that is at u will 

take this edge and come to v is 1 over d u. So, pi v is summation over all the neighbors u, 

the stationary distribution component corresponding to u times the probability with 

which the token will move from u to v that is essentially what we do over here. 
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And canceling this two d u we will get 1 over 2 times the cardinality of the edge set, but 

then we are summing over the neighborhood of u and so we get d v over to 2 times the 

cardinality of E. So, this completes the proof of our claim that the vector form by these 

components is the stationary distribution of this random walk. And of course, we 

immediately conclude that the time the expected time for a random walk to leave v and 

return back to v is the reciprocal of pi v which is 2 E over d v. 
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Let us look at slightly more general h v u. So, let us assume that let us focus on an h in 

the in the graph. Now, the expected time to go from v to u is at most 2 times cardinality 

of E of course. If you are lucky you will go on one step, but what it this claims is that 

even if you are unlucky the expected time to go from a vertex v to its neighbor u is at 

most 2 times E. Here have the proof of course. So, let us look at h u u you already know 

that h u u is 2 E over d u, and this what got over here. 
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But there is also another way to look at this, so from u with probability 1 over d u, we 

will go to neighbor w; and from that w, we will eventually make a way back to u and that 

is h u u, but then that is just the option in going to w. Using the law of total probability, 

we can sum this up over all possible all neighbors of u. And the as result, we get this 

quantity. So, the submission over all the neighbors w, you go to this one correspond to 

the one step, we take go to w and this h w u is expected number of steps that we take 

from w to u. And this option is exercised with probability 1 over d u, and this is just one 

of many options in particular one of N u number of options. This is the number of 

neighbors of u; and applying the law of total probability, we get this expression for h u u. 
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So, this basically this is two ways of computing h u u and so the d u is get canceled will 

get 2 E equals summation w belong to the neighborhood of u 1 plus h w u. Then of 

course, one of these w is the E is the v the neighbor that v we are interested in. So, 

clearly looking at the summation, the expected time to go from v to u must be in fact, 

strictly less than 2 times number of edges.  
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So, why did we even look at this, this actually an interesting consequence, interesting 

notion called the cover time. You may start to realize, why we are going to talk about the 



cover time, because this may this will have a bearing on the problem that we started out 

with. What is the cover time? It is the expected time by which a random walk has visited 

every node in the graph regardless of its starting point. So, it is the worst case time 

expected time for a random walk to explode the entire graph. Of course, we are talking 

about connected non-bipartite graph. More formally, it is the maximum over all vertices 

in the graph, the expected time for a random walk starting at v and visiting all the nodes. 
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The cover time of a graph G equals V comma E is at most four times the number of 

vertices times a number of edges, this true for any graph. For special graphs, we have 

better bounds on the cover time, but this is true for any connected non-bipartite graph. 
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So, why is this the case? We will consider a spanning tree of G. Now, if you consider the 

edges in DFS traversal order, now you have to consider both directions. So, each edge 

will be traverse to two directions that ordering will have at most two times, the number 

of edges minus 1 number of vertices V minus 1 number of edges. 
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Why because minimum spanning tree has in minus 1 edge; and each of those edges will 

traverse it most twice. So, these are all edges in the graph, so the expected time to go 



from one end to the other is at most 2 E. So, this naturally leads us to the conclusion that 

the cover time is at most 4 times V times E. 
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So, back to the s-t connectivity, we know cover time is less than 4 V E at that is at most 

in 2 n cubed, because the cardinality of edge set is n square less than n squared by 2. 

First use R the random variable R to denote the time to reach t starting from s.  

Remember the algorithm, we from s we start the random walk and we allow this random 

walk to walk. And R is the now let us assume that the graph is connected of the purpose 

of analysis. R is the random variable that denotes a time to reach t from s by this random 

walk. And from Markov’s inequality, we know that, the expected expectation of R is 2 n 

cued. From Markov’s inequality, what is the probability that R exceeds 4 n cubed well 

that is at most half. 
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So, if we run it 4 m n cubed, the number of times, and here m is just parameter not be 

confused with the number of edges because m is after (Refer Time: 21:38) the number of 

edges, here is the parameter. If what is the probability that R exceeds 4 m n cubed, well it 

is at most 2 raise to the minus m. So, if you make m, for example, something like log n, 

this quantity will become 1 by m. So, when s and t are connected, the algorithm after 

these 4 m n cubed number of steps will conclude that s and t are connected with high 

probability.  

On the other hand, if it is after 4 m n cubed number of steps, you do not reach t then you 

conclude that the graph is I mean s and t are not connected. And what is the probability, 

which will be wrong well let us know at most 2 raise to the minus m, so that brings us to 

the end of this series of segments. 

Thank you. 


