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In today’s lecture, we will talk about streaming. And many of you have already been 

introduced to streaming in our project discussions, some of you have presented problems 

based on streaming so as soon this is not very new to you. So, large (Refer Time: 00:29) 

jump right into the topic, but I thought talk little bit about the first time I came to know 

about streaming, this was several years ago to be precise. 
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It was actually SODA 2003, and this notion of streaming the topic of streaming was 

introduced by the plenary speaker of SODA 2003 was Muthu Muthukrishnan pictured 

here. A very interesting personality, I believe I have not really met him face to face, but I 

have seen him several times, you know excellent speaker, and one characteristic about 

him is a every time I see him, he has such a different hair style, different hair color, so 

anyway.  

This is how he introduced the streaming you are standing; you know on a stream or by a 

stream and you see the different types of fish go by. And he introduced the notion of 

streaming as you know you see all this fish going by and you have some questions in 

your mind about the fish. For a (Refer Time: 01:49), you cannot catch and store all the 

fish. So, you have to the let the fish go by, and then you at the end of the day after long 

day of you know fishing, you have some questions about the type of fish that you saw 

the biggest fish, the smallest fish, the average size and you know that is just give the 

started then many, many such questions. And so this is the kind of colorful perspective of 

which I was introduce to streaming. 
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So, without further do, let us get started let me introducing the streaming model. So, the 

data flows as a stream and you get to see data one, one item at a time and here you are 

looking at the data. And each time you get to see one data item and let say I give (Refer 

Time: 02:50), so let say the data item start from a 1, a 2 you currently looking at a i and 

so on, and the data string keeps coming in at every time step. And you do not get to 

stored the entire data at each point in time; you can do some temporary computation 

which we do not really care about how much computation we do.  

But the essential thing we do is that we have some sort of a synopsis or a sketch that we 

maintain. And typically this synopsis or sketch is going to be much smaller than the size 

of the streams. So, we do not assume that we know the size of the stream, so this quantity 

is an unknown. And however, the synopsis itself as assume to be very, very small and 

typically little o of n of n small as o of log n o of square root of n and in fact, we are 

going to see one example were we only use of o of log n (Refer Time: 04:10). So, with 

this let us jump into like a problem. 
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Let us say that we are getting a steady stream of items, then we do not even know how 

many items are there in the stream, but we want to count the number of items, and this is 

of course, quite easy because all we need is a counter of o of log n bits. And in fact, of 

with counter of o of log n bits, we can count n accurately. The challenge is what thinks of 

the situation where the number n is very large and you want to count using very few 

numbers of bits, and this could happen in cases like embedded systems.  

Let us see a lot of data, but there design to be working with such resource constraint 

context that memory is at a premium. And so in situations like this, it is interesting that 

we can actually get a rough estimate of the number of items with far fewer numbers of 

bits. In fact, what we are going to see now is a way to estimate n within an epsilon 

fraction.  

So, in other words, we are going to get an estimate n hat that is going to belong to n 

minus epsilon n and n plus epsilon n. We are going to be able to give this guaranty with 

probability at least one minus delta, and such an approximation is called an epsilon delta 

approximation. And believe it or not this problem was actually studied way back in the 

seventies; and in that in some senses it not very surprising because memory was a lot 

more expenses in back time, so it was important to design algorithms of this nature even 

back time.  



 

 

But I do not think the author realize how the important and fundamental these ideas are 

going to be, and how they are going to lead to very interesting work starting from the late 

nineties and two thousands and onward. So, this the algorithms we are going to study 

was introduced by Morris and later it was analyzed by (Refer Time: 07:02) in the mid 

80s. 
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So, here is how this algorithm goes. We initialize a variable x to 0; and each time we see 

a data item, we update x with some probability. So, in particular, whenever we see a new 

item, we flip a biased point; and with bias 2 to the minus x, remember x is value that is 

going to be incremented over time; if this biased point comes up to the heads and that is 

going to happen the probability 2 to the minus x then we increment this quantity x. At the 

end of the stream, we come to the very end of the stream; now we need to know how 

many items we have seen we simply output 2 to the x minus 1. And why this is even 

correct, and why what is the inclusion behind the algorithm, you may wonder. So, what 

is going on is the following. 

We start off with x equals to 0; first time, we see an item or x is going to be a 1. And then 

subsequently with probability have roughly speaking, you are going to increment in the 

next couple of occasions, so that would lead us to so this is items 1, 2, 3, 4, 8, now as you 

can see when we see the second and third item with probability half intuitively speaking, 

we would increment.  



 

 

So, by time we come to 4, we would have probably reached x value could have reached 2 

to 4 up to 7, you would be incrementing with probability 2 raise to the minus 2, so at 

one-fourth probability. So, between these ranges, you expect to increment by 1; and then 

between 8 and 15 you again hope to increment by 1; and from 16 to 31 1 you will 

increment by 1 on expectation and so on and so forth. So, every time the numbers 

double, you increment ones, this the rate of which we increment is algorithmic and 

number of bits we need to store the counter is only log of log n, so that is the intuition, 

but let us look at the a little bit more carefully and more formally. 
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So, the claim, we would like to prove is that the expectation of the random variable 2 to 

the x is n plus 1, and this is why we output not 2 to the x, but 2 to the x minus 1, so we 

output n. So, the question is why this claim is true. So, let x n be the value of x after 

seeing item n.  

So, now, the expectation of 2 to the x can be written in this way it is the submission of i 

going from one to infinity probability that x n minus 1 equal to i times now given that x n 

minus 1 equal to i, you want the expectation of 2 to the x n. So, in case you are 

wondering where this comes from, you can refer to (Refer Time: 11:14) page number 27 

that will be a good reference for you to verify this formula. So, now we have the 

summation or the overall i the probabilities of x and minus 1 times, and now we need to 



 

 

expand out the expectations the conditional expectations that we have here. Of course, 

this 2 to the x n, remember we were conditioning on x n minus 1 equal to i. 
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And if you know that x n minus 1 equal to i, then from the algorithm we know that we 

are going to increment with probability 2 to the minus i, and stay the same with 

probability 1 minus 2 to the minus i which is exactly what is given here in this formula. 

(Refer Slide Time: 12:18) 

 

So, with one or getting my i's and j's mixed up, so lets us call this i's. So with probability 

1 over 2 to the i, we have we are going to increment. So, 2 to the x n will become 2 to i 



 

 

plus 1. And with remain probability to stay 2 to the i. So, let us expand this out; and with 

a few cancellations, we are going to get the submission of the probabilities times 1 plus 2 

raise to the i, when we take the submission inside the (Refer Time: 13:02) and this is 

going to be two submissions. 
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The first submission is going to be 1, because it is submission over all possible 

probabilities or the probability space. And the other submission of this one let us look at 

this bit carefully so this is going to be nothing but the expectation of 2 to the x n minus 1, 

so this is nothing but 1 plus the expectation of 2 to the x n minus 1. And so now, what we 

have is the current set we can expand out so this is going to be 1 plus 1 plus E to the 2 

and this can be expanded out and we finally, get n minus 1 plus the expectation of 2 the x 

1, but x one is always 1. And therefore, the expectation of 2 to the 1 is going to be just 2 

and that is going to evaluate to n plus 1 which is exactly what we wanted. 

So, here is a quick exercise for you. This is just to give you some context of exercises 

design to move us towards on understanding of the variance of this random variable x. 

We want to show that the expectation 2 to the 2 x, which is essentially the expectation of 

2 to the x square, goes up to theta of n square. And so you can show this by using the 

same technique to be used to show the expectation of 2 to the x. And the implication of 

this exercise is that the variance of 2 to the x is equal to theta of n square.  



 

 

And when the variance theta of n square, the standard deviation is of the order of n; and 

if you work out the math, this is not going to be reasonable approach to get a good 

epsilon delta approximation. So, we need to be a bit more careful here. So, this a good 

starting point, but in order to get a good epsilon delta approximation, what we are going 

to do is not just have one estimate, but several estimates, and then take the average. And 

we will see that by doing that we can bring down the standard deviation of the estimate 

to a point where we get the appropriate epsilon delta approximation. 
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Someone call this algorithm Morris plus plus, because it is a one step improvement over 

the classic Morris algorithm. In this, we have a parameter t and that is parameter going to 

be theta of 1 over epsilon square delta. The exact constants can be worked out in the 

analysis. So, here is how we are going to this, so we are going to maintain t variables, we 

going to call them X 1, X 2 and so on up to X t, and we are going to initialize all of them 

to 0s. So, this is essentially implementing Morris algorithm in parallel. As each item 

arrives, we execute the following line in parallel for each value of i ranging from 1 to t.  

And we do this independently. So, when for any given value of i, with probability 2 raise 

to the minus X i, so it only uses the random the variable X i. With probability 2 to the 

minus X i, we increment X i, so these are the variables X 1, X 2 up to X t are 

manipulated completely independent of each other. But at the end when the stream ends 



 

 

we simply out put the average of the estimates. So, when the stream ends, we simply 

return 1 plus t average of 2 to the X i. 
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So, let us analyze this Morris plus plus algorithm. Let us use z to denote the average 

value of 2 to the x i which is essentially 1 over t submission 1 to t 2 to the X i. So, first 

question is what is the expectation of this z. Well, the expectation of each of the 2 to the 

X i, we know is n plus one and you sum them up and divide by t so that is essentially 

going to be n plus 1, so there is no change there. So going to get a good estimate with a 

correct expectation, but hopefully the standard deviation is improved. So let us see how 

we can show that. So for that, we will have to look at the variance of z. So, we first 

simply expand out z, so this is what shows up here. 

Now of course, we can bring the t outside the variants and that gives this square when we 

bring out at a constant term outside of the variants. And more over the variance of each 

of the 2 to the x i is equal to each other. And so this is the summation is really summation 

over equal variance terms so that and it summed from i equal to 1 to t, so that t can be 

brought out as well so it becomes 1 by t variance of 2 to the x. And of course, we know 

the variant of 2 to the x is sum theta n square, you should have worked it out as an 

exercise. So, if that is a case then this variant becomes theta of n square divided by t, so 

as we increase t we can get better variance. 
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So, now assuming it is sufficiently large look at the probability that is random variable z 

is far away from n. So, in particular z minus n minus 1, remember at the expectation z is 

equal to n plus 1, so the probability that z minus the expectation of z is greater than 

epsilon n is at most the variance of z over epsilon square n square. And of course, this is 

come from by Chebyshevi’s inequality. So, applying our knowledge of the variance of z, 

we get theta of n square over t and times 1 over epsilon square n square. 

So, now the question is well we have we know the t is theta of 1 over epsilon square 

delta for suitable constants. So, if we substitute that some other terms are going to get 

canceled out and this probability can be brought down to delta for a suitable choice of 

constants. So, just to conclude this, each execution of the Morris algorithm will require 

log log n bits, but we repeated t times where t is state of 1 over epsilon square delta, so 

our total memory is theta of log log n divided by epsilon square delta. So, now, here is an 

exercise for you.  

Extend this our Morris plus plus algorithm in order to achieve memory requirement of 

only log 1 over delta times log log n divided by epsilon square. So, instead of essentially 

instead of 1 over delta term, we are going to have log 1 over delta, so that is the pre 

significant improvement. As I hint, please note that you will have to use the (Refer Time: 

23:19) of bound to achieve this bound. 


