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In this segment we are going to talk about sampling from a stream. So, we are going to 

assume that our stream has distinct items. This is not essential, but it helps to keep the 

problem clean and simple. So, we have a stream of some n items that are showing up, but 

we do not know n. Our goal is to sample from the stream so that we output an item from 

the stream and the probability that each of these items is output must be equally likely. 

So, in other words, for all i the probability that a i is chosen must be 1 over n. 

And so, this without the knowledge of n is somewhat tricky, but as it turns out, there is a 

nice clean way to sample from a stream and here is how this algorithm goes. 
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We have a memory cell, a single cell because we want to sample a n single item and let 

us call that as s. s is initialized to bottom, so initially s does not have anything useful. 

And now, let us see how we update s as the stream flows by. 

So, every time we look at the ith item, we toss a coin with bias 1 over i and if that coin 

comes up heads, in other words, probability 1 over I, we replace the current contents of s 

with a’s of i and of course, a’s of i is the ith item. So, now, and that is it. This is the 

algorithm. We need to now prove this algorithm actually outputs a correct sample that 

we want. In other words, at the end of the stream when all n items have been seen the 

probability that the memory cell s contains a i should be equal to 1 by n and this must be 

true for all. 

So, now let us go about proving that our algorithm, that reservoir sampling algorithm is 

in fact, correct. So, how do we do that? Let us look at the probability with which the ith 

item is finally output. 
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First of all, the ith item must have had a chance to, must have gotten into the memory 

cell and that at the point in time when the ith item has been seen, the ith item gets copied 

into the memory cell with probability 1 over i and furthermore, if I, finally, outcome 

must be ith item. None of the subsequent items can replace i because once it is replaced, 

it is gone, that is the way the algorithm works. 

So, what is the probability with which the next ith item, the i plus 1th item does not 

replace the ith item from s? It replaces the ith item with probability 1 over i plus 1 and 

therefore, it does not replace the ith item with probability 1 minus 1 over i plus 1 and this 

same pattern has to continue. The i plus 2th item also should not be able to, should not 

have replaced item i. We get these, this sequence of multiplicative terms. 

So, let us see how this multiplicative terms, how they expand out. As it turns out, they 

have a nice form. When we expand them out, it is a sort of a telescopic product and most 

of the terms cancel out and we are, finally, left with 1 by n and this is of course, true for 

all i which is exactly what we wanted to prove. 
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Let us now move on to sampling, not just one item, but some k items. Here, we need to a 

bit more careful. Now, this sampling can be done in one of two ways. We can either 

sample with replacement or without replacement. Now, with replacement is somewhat 

straight forward. We can simply perform k independent sampling, reservoir sampling for 

single items. So, that is relatively straight forward. 

Let us now come to the aspect of sampling without replacement. So, now if you consider 

any, any subset of k items, it should be equally likely that subset should be picked with 

equally likelihood as any one of the n chooses k possible, such k items subsets. So, how 

do we do that? Well, here we again rely on the previous intuition from the reservoir 

sampling. Now, we just need to be a little bit more careful. This is quite intuitive. Here is 

how we do this. 
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Instead of maintaining one, one memory cell, we maintain k memory cells. These k cells 

are denoted s 1, s 2 and so on, up to s k. And for the first i, for the first k items, you 

simply assign the item a i by ranging from 1 to k to the memory cell s i. 

Now, what happens if i is greater than k? We first generate a random number and this 

random number is generated uniformly at random between 1 and i and if that number 

that randomly generated number happens to be between 1 and k, then we replace the jth 

memory cell. So, the random number, if it is less than or equal to k, that means, it is the, j 

is, s j is somewhere here and we replace the contents of s j with a i and that is what we do 

here. 

So, let me give you a little bit of intuition for why this works. Now, the first k items we 

have to fill them in because if the stream stops at k, there is only a single k item subset 

and that must be the subset that is, that is output. Now, as think of the, well, think of the 

stream extending past these first k items and consider the item a i with probability k over 

i. So, this is, this is k and this is i with probability k over i. It replaces an item from the, 

from the memory cells and which memory cell should not replace it. It replaces exactly 

the, the index that was generated randomly. 

So, why is this algorithm correct? What, actually first of all what do we need to show? It 

will say that this algorithm is correct. So, first of all notice that this algorithm is going to 

produce a subset of k items and it is not with repetition. So, that part is taken care of. 



Now, what we want to show is that the probability with which item a i occurs in the 

chosen subset is k over n. 
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So, more, more formally, let be the set of items that we output as the samples, basically 

the contents of the memory cells, when we reach the end of the stream. Now, we need to 

show that the probability with which an item a i is in, that the set s is equal to k over n. 

So, how do we show, that well, first of all the item a i must have been placed in the, in 

one of the memory cells and that happens with probability k over i and then it should 

remain in the memory cell in which it was placed. 

Let us, without loss of generality, say that the memory cell was placed in, but one some 

particular location, the i plus 1th item should not have fallen in that particular location, 

the i plus 1th item falls in a particular location with probability 1 over i plus 1. So, it does 

not fall in that location with probability 1 minus 1 over i plus 1. 
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So, let me go back to the picture to explain exactly why this happens. So, let us assume 

that the ith item gets placed in this cell s j. Now, the i plus 1th item can, will also 

generate a random number. If it generates the random number anywhere here, no 

problem; if it generates the random number that falls within this range, well we need to 

be a bit careful, if it falls anywhere in this region that is OK, it falls anywhere in this 

region that is ok.  

The only location it should not fall into is s j because if it falls in s j, then our item a i has 

to be evicted and the probability of that is 1 over i plus 1 and therefore, the good 

probability that a i gets retained is 1 minus i over i plus 1 and of course, this has to be 

maintained throughout. So, you get a similar telescopic product, which finally, will 

evaluate to k over n, which is exactly what we wanted. 

Now, as an exercise think about this. What we have shown is, that the item a i is one of 

the elements of the subset that we are outputting at the end of the stream with probability 

k over n. Thus, this translates to what we actually started out, with what we find. What 

we wanted was that the probability that any fixed k item subset is chosen as the subset as 

output should be exactly equal to 1 over n chose k. So, have we proven this? Think about 

this, that is your exercise. So, that completes our segment 2. 


