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Lecture – 22 
Approximate Median 

 

In this segment, we are going to look at Approximate Median. 
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Just to remind ourselves we have introduced the notion of Streaming, we have also 

looked at Approximate Counting that requires just O of log log n bits, and we have 

looked at Sampling k items out of the n item stream when we do not know n; both with 

and without replacement. This is called Reservoir Sampling.  

We are now ready to apply our ideas to finding an approximate median. Just recall, we 

already looked at the problem of finding the exact median it requires multiple passes. We 

look direct from the classical RAM moral perspectives, and if you recall we had to 

sample some n to the three-fourths number of items, we have to find the median, and 

then we had to step back from median. 

Basically, find two items within the samples, then go through the passes again find items 

that fell within the two items in the sample so and so forth. So, that requires a little bit 

more work requires multiple passes, little requires into the three-fourths memory and so 



on so forth. It still works as a streaming algorithm, but you will need multiple passes and 

you will need into the three-fourths memory. So, what we are going to look at today is 

requires a lot lockless memory and just a single pass. 
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In particular, this approximate median algorithm will only requires O of epsilon to the 

minus 2 times log 1 over delta amount of memory and it will require exactly 1 pass. The 

algorithm itself is very simple. All we have to do is sample some t items with 

replacement from the stream and we know how to do that. And we need to simply the 

return the median of those t samples. So, it is probably the most natural algorithm that 

you can think of.  

Of course, the only think that remains is for us to know what the value of t is, and that is 

going to be our primary concern. If we plug in the appropriate value of t we will get an 

approximate median, but for that we first need to be very clearly about what we mean by 

an approximate median. 
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We all know what the true median of a set of an item is. You take the sorted view and the 

true median is right in the middle. It is simple the item with rank n of two and by rank 

here we mean the position in the sorted view. Now the question is what is an 

approximate median? And notice that we are requiring an epsilon approximate median so 

there is parameter.  

So, what is an epsilon approximate median? Well, consider this range, this item is a 

frank n over 2 minus epsilon n and the item to the right is of rank n over 2 plus epsilon n. 

Now any item within this range of rank n over 2 minus epsilon n up to rank n over 2 plus 

epsilon n is an epsilon approximate median. 
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Now, that we know what an epsilon approximate median is, now let us said about finding 

a approximate t value for which our algorithm will output and epsilon approximate 

median with probability at least 1 minus delta. So, goal is to output an epsilon 

approximate median with probability at least 1 minus delta. So how will this not happens 

that is the important question. Let us again look at the sorted view. In this sorted view we 

certainly do not want to output an item that is shaded red, because that is falling outside 

of the acceptable range for an epsilon approximate median. 

In particular, when we look at the sorted view of the t samples, there are two bear events 

that we want to avoid. We want to avoid getting more than t by 2 items or t by 2 or more 

items from the red range in the left. And similarly, we also want to avoid getting more 

than t by 2 items from the red range in the right. These are the two bear events and we 

want to avoid them. So, the question now is what is an approximate value of t such that 

these two bear events can be avoided. 

So for that let us define random variable. Y i is our random variable and it is equal to 1 if 

the ith item in the sample now you just think of the sample has being ordered in some 

way and not necessarily sorted and the Y i equal to one if the ith item in the sample as 

rank less than n by 2 minus epsilon n. Basically, this captures the event that the ith item 

is coming from the red range on the left. We do not want too many such items. So, with 

that being the case. 
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Let us define Y to be the summation over all t over all i ranging from 1 to t Y i. And of 

course, we know that expectation of Y i equals to half minus epsilon t. Our bad event, 

the event that t by 2 or more items in the sample are coming from this red range in the 

left can be captured in the following way, that simply the event y is greater than or equal 

to t by 2. And of course, we want the probability of this event to be small. In particular 

we want this probability to be no more than delta by 2. 

Why delta by 2? Because, there is a mirror image asymmetric other bad event that we 

also want to avoid the probability delta by 2, so the two bad events for together using the 

union bound we can say that there the bad events do not occur with probability or it 

occur with probability at most delta and therefore the final outcome is correct with 

probability at least 1 minus delta. So, that is the core. And now notice that these Y i's are 

independent. So, applying Chernoff bounds we look at the probability Y greater than or 

equal to t by 2 and we rewrite it as probability Y greater than or equal to half minus 

epsilon times t and that is mu times 1 plus epsilon. 

This is smaller than e to the minus half minus epsilon times t epsilon square divided by 

3, and we want this whole probability to be less than or equal to delta by 2. So, if you 

work out the mathematics we can include that this in equal to we can be achieved with t 

belonging to O of epsilon to the minus 2 times log 1 by delta. In fact, I would encourage 

you to find out the exact t value for which this inequality holds. 



So, with that we conclude our lecture on introducing streaming, looking at the problem 

of counting the number of items in a stream in a single pass using very small memory, 

the problem of sampling items some k items from a stream both with or without 

replacement. Finally, now we have looked at the problem of finding the median and 

approximate median from this stream using very small amount of memory in particular 

O of epsilon to the minus 2 times log 1 over delta memory in a single pass to find an 

epsilon approximate median in our stream. 


