
 

 

Algorithms for Big Data 

Prof. John Ebenezer Augustine 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Lecture - 27 

Pairwise Independence 

 

(Refer Slide Time: 00:14) 

 

Today’s lecture is about Pairwise Independence. And before we get into the topic of 

pairwise independence I am like to remind you that the independence that we enjoy is 

expensive; it is both expensive for us in society; it is also expensive in computer science. 

Well let us start with society basics a little more interesting.  

And so here is a quote from Mahatma Gandhi “Freedom is never dear at any price. It is 

the breath of life, what would a man not pay for living?” And in the sense he is saying 

the price of freedom is your life, I mean you should be willing to give your life for the 

independence that we enjoy, so that is tells you something independence, freedom these 

are expensive things. And the other aspect in a (Refer Time: 01:13) is that you may think 

you have independence expect you do not sometimes, and this again is true in computer 

science we may think we have independent random bits, but maybe we do not. But here 

is a little cartoon, my favorite Calvin and (Refer Time: 01:33), where you can pause and 



 

 

you know enjoy the cartoon, it talks about the precede independence that Calvin and 

enjoys in America, but is that true, it is fair interpret the cartoon. 

So, in some sense you can think of a place as the variances of independence and still 

question whether there it is truly independence and that is again true about random bits. 

Because our time we make analysis of life easy by assuming independence, but is there a 

good source of independent random bits that is a tough question.  

In this lecture, we will try to address this issue and the way we are going to address it, we 

are going to allow random bits to be less than pairwise independence. And but still 

maintain some formal understanding of what we mean by that, and that way we can still 

analyze algorithms or sampling things like that with some mathematical figure, so that is 

the goal of today’s lecture. So, in some sense we are going to look at random bits without 

the level of independence that we are used to. So, just let us first remind for ourselves 

what we mean by that independence. 
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Recall that given to an events E 1 and E 2, we say that they are independent if the 

probability of this event E 1 intersected with E 2 equals the probability of E 1 times E 2. 

Another way of stating this precall is probability of E 1 given E 2 times the probability of 



 

 

E 2. Now that if you recall is nothing but probability of E 1 intersected with E 2; and if 

that equals probability of this whole left hand side equals probability of E 1 times 

probability of E 2.  

Now, here probability of E 2 can be canceled out, so essentially what we have is that the 

probability of E 1 given E 2 equals the probability of just the event E 1. So, in other 

words, the probability the fact that E 2 happen or did not happen has no bearing on the 

probability of event E 1. And by symmetry, we also have that the probability of E 2 given 

E 1 equals probability of E 2 when events E 1 and E 2 are independent. So, the 

independent means here that the rather E 1 occurred or not has no bearing on the 

probability of event E 2; things become a bit more interesting when you have more than 

just two events to talk about. 
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So, let us consider some n events E 1 through E n. And we say that these n events are 

mutually independent, if for every subset of 1 through n basically subset of indices used 

to denote these events for every such subset I, the probability of the intersection of all 

events E little i, where little i belongs to the set I equals the product of the individual 

probabilities. And let me emphasize that this has to be true for all subsets i of the index 

set 1 through n. 
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And of course, the notion of independence extends to random variables as well. So, if 

you have random variables x and y, these two random variables x and y are independent, 

if the probability that x equals to the particular value x. And the probability that y equals 

to a particular value y, importantly for all x comma y in the ranges of values that x and y 

can take the random variables x and y can take.  

If this probability on the left hand side equals, the product of the individual probability, 

there is a probability that the random variable x takes the value little x times the 

probability that the random variable y takes the value to del y then we say that x and y 

are independent. And as one might expect this notion extends to multiple random 

variables. 
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So, let say we have random variables X 1, X 2 and so on up to X n are mutually 

independent. Again if for every 'I' that this is subset of the index set from 1 through n, 

and now for any values X i, where X i fall within the range of the individual random 

variables say uppercase X i.  

We have this independence condition holding true which is that the probability of this 

joint intersection over all these events that is X 1 taking the values little x 1, X 2 taking 

the value little x 2 and so on, all these events intersected together equals the product of 

the individual probabilities. So, if this condition holds then these random and these this 

condition must hold for every - I subset of n, and for all combination of values x i in the 

range of the random variable X i for all i. So, what we have seen so far is just a 

recollection of independence the way we know it in particular we are talking about 

mutual independence. And we want to relax this notion; and in order to do that, we have 

to modify the definitions just a little bit. 
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So, this slide we have defined the mutual independence of events recall this. And now we 

want to suitably relax this notion of mutual independence; and in its place, we are going 

to define something called k-wise independence. And the key to defining k-wise 

independent events is to limit the level of independence. Now, here this independence 

condition given here must hold true for every - I that the subset of the indices from 1 

through n and that is the requirement for mutual independence.  

For k-wise independence that is what we are going to relax, we are going to say that this 

independence condition has to only hold for subsets I, whose cardinality is at most k. 

When we impose that restriction on I, we get k-wise independence. And our particular 

importance will be pairwise independence, for which we will require the independence 

condition to hold for all subsets of size at most 2. And as you can imagine this notion of 

k-wise independence or pairwise independence quite naturally extends to random 

variables independence random variables as well. 
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There again let us go in and make the necessary changes. So, here we are interested in 

defining a set of random variables to have a limited form of independence; in particular 

we want as we did with events define these random variables to be k-wise independent. 

And as before, we want this independence condition to hold for all subsets I of the index 

set, and with the limitation being that the cardinality has that we care about is at most 

this k.  

When the cardinality of this I goes beyond k, then we have no restriction on whether 

those events, those individual values for those many random variables obey the 

independence condition that we have here, everything else states the same. So, every 

time we restrict our requirement of this independence condition to hold only for subsets 

of a certain size at most k, then we get k-wise independence. And of course, as before we 

can define our random variables to be pairwise independent, if the independence 

condition holds for subset whose cardinality is at most 2. 

You may wonder why do we even care about pairwise independence. As it turns out pair 

wise independent random bits are lots cheaper in terms of the amount of randomness that 

we need to have in order to generate them. 
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So, what do we mean by that. Let us consider b mutually independent and uniformly 

random bits. And we denote them X 1, X 2 and so on up to X b. From this, we would like 

to generate pairwise independent bits. And we would like to generate lots of them; in 

particular, we would like to generate an exponential number of them. Let us see how can 

we do that. 
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Now consider these b bits X 1, X 2 and so on up to X b, we know that the cardinality of 

the power set is 2 raise to the b. And if we get rid of the empty set from the power set we 

will have 2 raise to the power b minus 1 subsets of this set. And now take each subset so 

let us say we take this subset S j; and using this subset S j, let us generate random bit and 

called that Y j, and Y j is simply the exclusive or over all bits in S j. So, in this manner, 

we have now generated 2 raise to the b minus 1 random bits, but how random are they. 

Let us for example, try to prove that they are uniformly at random. 
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Now, if we expand this out we get something like this X i 1 exclusive OR with X i 2 

exclusive OR with subsequent elements in the sequence, this is the sequence and so on 

up to X i cardinality of s. So, here we will be going to do we are going to isolate this one 

bit. Now if you consider all of these bits all, but the last bit the exclusive OR of those bits 

is going to be either 1 or 0. Now, what is the probability that Y j equals 1. There are two 

possibilities either the first set of bits where all one the exclusive OR was 1, or the 

exclusive OR was 0. And for simplicity, let us call this event A and this event B. So, the 

probability that Y j equals 1 is equal to probability the last bit is equal to 0 given event a 

time is the probability of A plus in similar fashion the probability that the last bit is 1 

given event B times the probability of the event B. 



 

 

The fact that the original bits were independent means that this these conditional 

probabilities we have written here are really not conditional probabilities. So, you can 

write them as unconditional probabilities, so the expression comes out in this manner 

which it is written. So, these probabilities we know their values they are just nothing but 

a half each. So, the expression simple becomes half times the probability of A plus the 

probability of B of course, the probability A plus the probability of B is nothing but 1 

leading to half. Of course, the similar argument will also help you see that the probability 

of Y j equal to 0 is also going to be a half. So, this idea of focusing on the last bit is 

called the principle of deferred decisions which is a widely used technique there is well 

worth knowing. 

In fact, here is a little exercise for you what we have shown so far is that these random 

bits these Y j(s) are uniformly at random, but we also need to show that they are pairwise 

independent and that is your exercise for all i and j prove that the y i(s) and y j(s) are 

pairwise independence. And in fact, you can do this again using the principle of deferred 

decisions that is going to be your exercise. 
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The question now is can we do better, and as it turns out we indeed can and here is how 

we can do better. Let us consider the integers the set of integers from 0 to p minus 1, 



 

 

where p is a prime number. And now from this set, let us draw X 1 and X 2 both 

uniformly at random. So, we only need to draw two numbers from this set. And then with 

those two numbers, we generate p random numbers, here is how we do that Y i is the i th 

such random number and we generate that by computing X 1 plus i times X 2 mod p. As 

it turns out these Y i(s) that we generate are drawn uniformly at random from 0 to p 

minus 1 and more over they are pairwise independent that is what we need to show. 
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Well, let us see why that is a case to begin with let us prove that the Y i(s) are drawn 

uniformly at random from f again without much surprise. We end up using the principle 

of deferred decisions here, we fix X 2 and then we observe the where random variable X 

1. And recall the X 1 is drawn uniformly at random from the set f. And under this context 

it is easy to see the Y i(s) are going to be also drawn uniformly at random from F, 

because we take we to whatever i times X 2(s) that we have we add X 1 and then we take 

mod p. So, the Y i(s) are going to be drawn uniformly at random from F as well. 
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The more interesting thing will be to prove that these Y i(s) are pair wise independent. 

So, how do we do that. Well for a pair of indices i and j are ranging from 0 to p minus 1, 

we need to show that the probability that y i equals some specific value a and y j equals 

some other specific value b is it is exactly 1 over p square. So, this is what we need to 

show. And let see how we can prove that. Later observe that we event that Y i equal to a 

is equivalent to X 1 plus i times X 2 equal to a the whole mod p, and similarly the event 

Y j equal to b is equivalent to X 1 plus j times X 2 equal to b mode p. So, what do we 

have here, we have two equations and we have two unknowns. And therefore, there is a 

unique solution for X 1 and X 2. And recall that p is a prime number. So, let us just fix X 

1 equal to lower case x 1, and X 2 equal to lower case x 2 as the as the unique solution 

for these two random variables X 1 and X 2. 

What is the probability that the random variable X 1 would take on the value lower case 

x 1 and that will that is with probability 1 over p, which we have already seen in the first 

part of the proof. And similarly what is the probability that X 2 equals lower case x 2, 

again that is going to be with probability 1 over p. And both X 1 and X 2 are independent 

of each other, and therefore the probability that both those events will occur is exactly 1 

over p square, which is exactly what we want. So, what we have seen so far is that 

independence itself is expensive; and it is hard to get in a computer. So, we have relaxed 



 

 

the notion of independence to pairwise independence or more generally k-wise 

independence. And in so doing, what we have realized is that we are able to generate a 

lot of random numbers, random bits, there are pairwise independent and drawn 

uniformly at random. 
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In fact, we can go even further, so there is useful extension where in given to and 

independent and uniform random bits, we can actually generate 2 power n pairwise 

independent and uniform strings of n bits each. And in a little while, we will see that this 

can be leveraged to do sampling in using far fewer rand truly random bits. 


