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Estimating Expectation of Continuous Function 

 

So far we have seen that using truly random bits that is bits that are uniformly at random 

and independent of each other, we can actually generate a lot of uniformly random bits, 

but bits are a pairwise independent of each other. And this seems like promising for 

unless we can make use of these pairwise independent random bits in some way in some 

meaningful way that they are not of much value.  

So, in this current segment, we are going to talk about how we can take advantage of 

these pairwise independent random bits. 
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The first thing that we are going to look into is whether the tail bounds that we have 

studied so far make any sense in when we consider pairwise random bits. So, let us look 

into that a little bit more carefully. Let us begin with some bad news.  



 

 

Well, if you recall Chernoff bounds crucially rely on the independence of the individual 

random variables, and so this does not much hope to get Chernoff bounds to work. But 

all is not lost because we do have a Chebyshev’s inequality and that one does not require 

independence as much as it requires the knowledge of the variance of the random 

variable. So, in this case, with pairwise independence variance is sufficiently well 

behaved and so we should be able to use Chebyshev’s inequality. 
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So, let us see how that can work. So, we are going to try to use Chebyshev’s inequality. 

And for that let us let us define X 1, X 2 and so on up to X n to be pairwise independent 

random variables. As usual we are interested in this sum of these random variables, so 

that is denoted by x we want to establish that the variance is clean and easily use.  

So, when we want to now let us look at how to compute the variance of X, and this 

variance is given by this formula where we first sum over i puts 1 through n variance of 

each individual X i, but these random variables are not independent of each other. And so 

we need to actually also add their covariance’s; so in addition to the initial summation, 

we will also have to have a second summation over all pairs i and j the co variance of X i 

comma X j. 
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Now, let us look at the covariance term a little bit carefully. What is the covariance of X i 

comma X j formula is the expectation of X i minus the expectation of X i times X j 

minus the expectation of X j. So, let us expand that out we are going to get this long 

expression. And if we further I mean using linearity of expectation, if we takes the 

expectation in to each of the terms individually there is a few cancellations that take 

place. And we will be left with E of X i times X j minus E of X i times E of X j. 
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But notice that these random variables X i and X j are pairwise independent and 

therefore, E of X i times X j will be equal to E of X i times E of X j, so this expression 

turns out to equal to 0. 

(Refer Slide Time: 04:18) 

 

So, going back to the formula we had for the variance, we have summation over the 



 

 

individual variances plus the summation pair wise covariance’s, but these pair wise 

covariance’s vanish we just saw that. So what we are left with is that the variance of x is 

simply the summation of the individual variances. And so this is very nice, because now 

it can be easily applied into the Chebyshev’s inequality, so to apply Chebyshev’s 

inequality, we just have to look at probability that the absolute value of x minus the 

expectation of x is greater than or equal to sum a.  

Chebyshev’s simply tells us that at most variance of x divided by a square. And we have 

nice simple formula for the variance of x, so we simply plug that in. So, it is nice to see 

how the Chebyshev’s inequality can be applied and that is nice, and theoretically elegant, 

but let us looks at an example where it is actually applied. 
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Let us try to estimate the expectation of a continuous function; yes, this is going to be 

our application. We are going to use fewer random bits; and by that I mean that we will 

be using fewer independent random bits than normally need it in order to be able to 

successfully estimate the expectation of a continuous function within reasonable epsilon 

delta (Refer Time: 06:13). Here is the function f; we are in interested in the function in 

the range 0 to 1, domains also 0 to 1. And we are shown that the function is continuous, 

and differentiable in the range 0 comma 1.  



 

 

What we want to do is compute the expectation of f of x, where x is arranging from 0 to 

1. And we all know the formula for that is simply the integrating f of x dx from 0 to 1, 

but we do not know anything about f of x, f of x can be a fairly complicated function. All 

we know is that it is differentiable and is continuous. So, this expression might not be 

easy to work with. So, we need to estimate this quantity. So, here is how we do it. We 

apply two important steps here.  

Firstly, we discretized the region 0 to 1, and then even when we discretize it, we get a lot 

of discrete points so we really cannot compute f of x in all of those discrete points. 

Instead, what we do is we sub sample from those discreet points; and only compute f of x 

in those sub sampled points and then use that to estimate this inter graph. 

(Refer Slide Time: 07:45) 

 

So, let us look at it a bit more carefully. So, first of all what we are doing is the first step 

is discretization. So, we have the domain of the function ranging from 0 to 1, we are 

going to break that up into small pieces; and these pieces can be thought of as being 

index by this variable i; each discreet point therefore is i divided by 2 power n because 

there are 2 power n discreet locations. And when we discretized this domain in this 

fashion, what we can see is that the expectation of f of x is approximately, the average 

value that f takes in all those discrete points and that is what this formula says, but there 



 

 

is a little bit of care that we need to take.  

f the function f was to even though it is differentiable, if it were to fluctuate widely then 

this formula may not work. So, what we need to ensure is that the derivative of f which 

kind of tells you about how much it how steeped f can go if we want to ensure that 

derivative is bounded by small constant. So, this is an extra assumption that we are 

making, which is reasonable for most applications. 

(Refer Slide Time: 09:24) 

 

So under that assumption, we get this approximation, but notice that to get this good 

approximation, we needed to have 2 power n discrete points and that is just way too 

much, and way too expensive we cannot compute f of x at all of those 2 power n discrete 

points. So, as we mentioned earlier, the trick is to sub sample a few of the discrete points 

and then estimate f in those locations, compute f in those locations, and use that to 

estimate E of f of x, which we denote by this f bar. So, the question is how many samples 

we need, and more importantly how many independent and uniform random bits do we 

need in order to be able to get those samples. 
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Let us first approach this using the tradition technique that we know when that is using 

Chernoff bounds. And in a context like this, we need to use a slight variation of the usual 

Chernoff bound that we normally know. So, let us take this new Chernoff bound. Here let 

us Z 1, Z 2 up to Z m be i independent and identically distributed real valued random 

variables.  

So this for example, will be used to model the samples that we draw from each of the 2 

power n discrete points, but this bound itself is more general, so Z 1 to Z m are just i i d 

real valued variables and their mean is in the range 0 comma 1. And each of the Z i's take 

value from a finite set of values in the range 0 comma 1. They do not even need to be 

equally space, but in our case, they are equally spaced. We do not even need that, but we 

do have that if in the as far as we have this freedom to allow that i, is used to take any 

finite set of values. 

And now let us look at the probability that the sum of these Z i's deviates far from it is 

me. In particular, let us look at the difference between the sum of the Z i's minus m times 

the mu, the mu being the mean of each Z i. What is the probability that the absolute 

difference between these two terms is more than epsilon m? Well, we get a Chernoff 

bound here and that is at most 2 times E raise to the negative 2 m epsilon square. So, this 



 

 

is very nice. 
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So, let us it make slight easy, we can apply this directly to our context. We can in order to 

get a nice epsilon approximation within a confidence interval of 1 minus delta, what we 

need to ensure is that the right hand side of this Chernoff inequality is at most delta. And 

in order to ensure that the right hand side is at most delta, all we need ensure is that the m 

basically m is the number of random variables that we considered.  

In other words, the number of samples that we need must be in big omega of 1 over 

epsilon square ln 1 over delta. And each of these sample members, these are real valued 

variables; in our context, they are going to be 1 of the 2 power n discreet locations. So, 

each of those samples requires n bits. And so the total number of random bits in this 

approach would be big omega of n over epsilon squared ln 1 over delta, which is quite a 

bit. So, of course, we are interested in approving this; so we ask ourselves, can we do 

better. 
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So our approach tells second approach, we will try to improve this and that is using 

Chebyshev’s inequality. And here we try to exploit the pairwise independence. So, let us 

try you know pairwise independence sample so our now we call them X 1, X 2 and so on 

up to X m these are pairwise independent n bit vectors drawn from 0 comma 1 raise to 

the n. Now, you can interpret these as basically indices in the range 0 to 2 power n minus 

1.  

Now let y be average value of the function f evaluated at each of the discrete locations 

indicated by these pairwise independent n bit random variables. So, remember these x j's 

we are interpreting them as n bits basically a location and index into the two power n 

discrete locations. So, this x j divided by 2 power n will give the real value, the value 

between 0 and 1 that at which we need to evaluate f and that and we are evaluating f at 

that point. 
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Since, it is x j is drawn uniformly at random from 0 to 2 power n minus 1, the 

expectation of y is exactly equal to the f bar which is the estimate of the expectation that 

we want, so that is correct. But how we are doing on the variance front, well, variance of 

y is simply the variance of the right hand side which is 1 over m summation j equal to 1 

to m f of x j divided by 2 raise to the n. And as you all know when we get a constant 

from inside the variance, and we pull it outside of the variance, it has to get squared so 

that is equal to 1 over m squared variance whatever inside at the (Refer Time: 16:26). 

Now, the variance of the summation we have already seen can be rewritten where the 

variance is taken into the summation. So, this variance that is outside can be taken into 

the summation and so we will get summation j equal to 1 to m the variance of f of x j 2 

to the power n. But each of these x j values is essentially of the same variance, so we 

simply for any fixed j; we multiply the variance m, with by m, and as what we get over 

here.  

And so with some cancellations, we get 1 over m, and then notice that the variance of a 

variable x for example, is equal to E of x squared minus E of x the whole square. So, if 

we just want an upper bound, we can just use the first term in this formula for the 

variance. So, what we do is we replace this variance term with the expectation of the 



 

 

square of the random variable. And we by doing so, we will get an upper bound which is 

what we care about. 

(Refer Slide Time: 17:51) 

 

But it is clear that this expectation is going to be at most 1. Well, why is that because f 

member is bounded from above by 1 throughout its domain which is 0 to 1. So this 

expectation is going to be at most 1, and so we can get an upper bound in the variance 

which is just 1 over m. 
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So, let us plug that into our Chebyshev’s inequality, what is the probability that our 

random variable y is close to the estimate that we want. In particular, what is the 

probability that the absolute value of y minus f bar is greater than epsilon and that 

Chebyshev’s inequality tells us that it is bounded by variance of y divided by epsilon 

square. So, if we apply that member variance of y is 1 over m, and so we get one over m 

epsilon square as the upper bound on this bad event. And we want this bad event to be at 

most delta.  

And would this will imply that m has to be more than 1 over delta times epsilon square. 

And if you recall that is more samples than the approach that we took earlier you saying 

Chernoff bounds. So in the Chernoff bounds approach, we only needed big omega of 1 

over epsilon square times log 1 over delta, but here the log fact log is replaced by just 1 

over delta, so that is seems like bit of negative use. 

So, how do we interpret this situation? Well we have to recall that we can generate a lot 

more samples using fewer bits, when all we want is pairwise independence samples. 

More precisely if we had two n uniformly at random independent random bits then we 

saw that we can get two power n samples each of n bits each n bit long and these two 

power n samples are guaranteed to be pairwise independent, and if the number of 



 

 

samples that we need here one over delta epsilon square in that constants, so we should 

be able to generate that with very few truly random bits. 

So, in that sense, when our goal is to minimize the number of truly random bits that is we 

need in order to do the sampling this approach tends to be much better. So, let us 

conclude what we saw in this segment is that pairwise independent random bits are 

actually useful. First of all we saw that tail bounds like Chebyshev’s inequality can be 

applied although Chernoff bounds cannot be applied, so (Refer Time: 21:19) lose some.  

And moreover we also looked at an application where the number of truly random bits 

that we needed was far fewer, even though the number of samples that we took was that 

we need to take is a little bit more and that is a significant improvement. In particular, 

keep in mind that there is some context where the number of truly random bits must 

indeed be kept low. So, one reason why this might this is required is when you need 

when you run some sort of a scientific experiment, when you need to be able to replicate 

the sampling. 

If the number of samples is a lot, you may need to store all them for application, but if 

the actual truly random bits that control these experiments was small, we only need to 

store those random bits and then we can since the pairwise independent random bits were 

generated by an algorithm. You can actually generate the required pairwise independent 

random bits and replicate the experiment. And all we needed to do was store very few 

truly random bits, so that is just one of many reasons why we go through all this (Refer 

Time: 22:47) to ensure that the number of truly random bits is as small as possible. So 

with that we conclude this lecture.  

In the next lecture, which is an extension of the ideas that we have discussed in this 

lecture, we will extend our ideas of pairwise and k-wise independence to hash functions, 

so stay tuned for that. 


