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Today, we are going to talk about Universal Hashing. Before we define universal 

hashing, let us just recollect, what we have looked at so far. 
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We have looked at the balls in bins framework and we analyzed balls in bins using under 

the assumption that each ball is thrown into a bin that is chosen uniformly at random, and 

the choice of bins are mutually independent of each other and we used this balls in bins 

framework to analyze hashing, and we typically made a simple uniform hashing 

assumption. We assumed that when an item gets hashed its place in location that is 

chosen uniformly at random from all the possible hash locations and using this 

assumption we can invoke the ideas from the balls in bins framework. 

For example, when we look at chain hashing, the worst case performance of chain 

hashing co-relates to the height of the most loaded bin in the balls in bins context. We 

also looked at independence in the last lecture, in particular we noticed that 

independence is somewhat expensive, but if we relax a notion of independence from 

mutual independence to some k-wise independence then it is cheaper. In particular, we 

looked at ways to generate pairwise independent random bits and pair wise independent 

random numbers. 

We also noticed that while limiting ourselves to pairwise independence we did not lose 

out too much. We were still able to employ, for example, the Chebyshev's inequality. We 

also observed in the past that hash functions can be expensive and difficult to analyze 



and hard to implement and so on and so forth and the problem comes from the fact that 

hash functions have to balance two requirements. On the one hand, hash functions should 

behave randomly they should have could randomness properties. 

For example, when you hash an item it must be equally likely to be hash into any one of 

the locations and also we would like these hashed values to be mutually independent of 

each other. So, that is could randomness properties, but on the other hand when you hash 

an item it has to always hash in the exact same location, that is a very deterministic 

requirement because when you hash an item to store it and later on when you hash the 

item to search and receive it they must be in the same location, otherwise it is not going 

to work. So, these two requirements, the randomness requirement versus the 

deterministic requirement always brings about a bit of tension for us something that we 

need to resolve and here is an idea for how to resolve this tension. 
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Now, think about a single hash function. This is going to have good deterministic 

properties because it is a single function. So, anytime you hash an item is always going 

to go to the same location, but when we choose a single item it suffers on the randomness 

point because it is a single hash function. So, how do we alleviate this situation? Instead 

of focusing on the single hash function, let us consider a family of hash functions. So, we 



have this whole family of hash functions and when we actually need a hash function we 

choose one, but we choose one uniformly at random from this entire family. So, in this 

manner, it is easier for us to bring in the randomness requirements for hash functions, but 

we need to be bit careful when we do this. 
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Let us try to be a bit formal and let us try to define such a family with the correct 

properties that we required. So, we are going to define, what is called a universal family 

of hash functions and so it is going to be such family h and each member of the family is 

a hash function that will map universe to a set of locations, and such a family is going to 

be called a k universal family of hash functions. 

If the following condition applies, now choose let say you choose a hash function h 

uniformly at random from this family and let us pick x 1, x 2 up to x k which is a subset 

of the universe and this subset has to be of cardinality at most k, then we will require the 

probability that each of the items hash into the same locations should be at most 1 over n 

to the k minus 1. If this condition holds then this family is called a k universal family of 

hash functions and remember this condition must hold for hash function h chosen 

uniformly at random. So, the randomness is based on this choice of hash function and it 

must hold for any subset of at most k items drawn from the universe 0. 
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I might think this is a hard requirement, but is actually quite easy to obtain. So, let us for 

example, focus on pair wise or rather 2-universal family of hash functions. So, here is a 

one way to produce such a family. Now, our universe is ranging from 0 to m minus 1 and 

the hash locations are ranging from 0 to n minus 1, and let us pick a prime number p that 

is larger than m and let us define a hash function h with parameters a and b. This hash 

function will take an x, x is in the set b will take an item x and hash into the location x 

plus b, first you mod a with p and then you mod with m. Well, that is just a single hash 

function, but remember we have parameters a and b. 

So, with by extending our choice of values for a and b ranging from 1 to p minus 1 and b 

ranging from 0 to p minus 1. We will get not just one hash function, but a family of hash 

functions and this family of hash functions is 2-universal of family of hash functions and 

we are going to skip to prove, but its suffices for us to know that this 2-universal family 

of hash functions and as you can obviously, see the construction is quite straight forward. 

Let me just point out one minor technical detail, b ranges from 0 to p minus, but a only 

ranges from 1 to p minus 1. So, if we want to generate or pick hash function uniformly 

random, we pick at a uniformly random from 1 to p minus 1, b uniformly random from 

to 0 to p minus 1 and that immediately implies choice of our hash function h a comma b 

and that is our choice of hash function. 
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We can extend our theory of universal hash functions to something this likely stronger. 

So, here we are going to define, what is called a strongly universal family of hash 

functions? It is again a family in which each member is a hash function that maps the 

universe to the set v and for this family to be a strongly k-universal family of hash 

functions. Here is a condition that must apply, now again as before let us consider one of 

the hash function, hash functions h chosen uniformly at random and let assume x 1 to x k 

is a subset of the universe and this subset is more of cardinality k and now for any choice 

of y i ranging from 0 to n minus 1 basically y i belongs to p. 

Now, the probability that x 1 is hashed into y 1 and x 2 is hashed into y 2 and so on up to 

x k hash into y k should be at most 1 over n to the k, that my apologies, it is not at most 

one over n to the k, it should be exactly equal to 1 over n to the k. This is the requirement 

of for strongly k-universal family of hash functions and quite obviously, this is a stronger 

definition. 
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But the nice thing is such a family can still be constructed quite easily, especially if we 

all require is a strongly 2-universal family of hash functions. So, again how do we do 

that? Well, the universal it says ranging from 0 to p minus 1 and here p is a prime 

number and also let assume that v ranges from 0 to p minus 1. Again we define each 

individual hash functions based on parameters a, and b. So, h a comma b of x will take 

the item x and hash into the location a x plus b mod p and this family induced by the 

various choices of a and b. 

We can prove is a strongly 2-universal family of hash functions. Again, we going to to 

skip the proof, but it is obvious to see that this family can be easily constructed and well 

that mainly the family you need not be constructed the, we can draw hash function 

uniformly at random from this family very easily. So, all we need to do is draw 2 

numbers, a and b from 0 to p minus 1 and that implies the choice of the hash function. 
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So, before we proceed, let us ask ourselves some questions, I would like you to think 

about these questions and answer them for yourself, so that you have a sense of 

confidence about your understanding of this universal family of hash functions. Now, let 

us suppose, h is a drawn from 2 uniformly at a random from 2-universal family of hash 

functions, my question is h pairwise independent, think about that and answer the same 

question.  

Now, under the context of drawing h uniformly at random from a strongly 2-universal 

family of hash functions, is h now pairwise independent? What is going on here finally, 

is a strongly 2-universal family of hash function always also 2-universal family of hash 

functions, think about these three questions and make sure your understanding of hash 

universal family of hash function is clear that way. Now, we defined this universal family 

of hash functions, how useful are they? 
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For example, our first concern would be their application in a very fundamental context, 

for example, the balls in bins context what happens when we replace the notion of balls 

choosing bins uniformly a random with the notion of balls choosing their bins based on 

some hash functions that is strong uniformly at random from, say 2-universal family of 

hash functions.  

Let us think about that. So, we have m balls n bins, we use a hash function h to take each 

ball and hash into a particular location at particular bin and this h is drawn uniformly at 

random from 2-universal family of hash functions. So, what is our (Refer Time: 14:14) 

and now to understand that let us define random variable y and is defined as the number 

of balls in the max loaded bin and obviously, our question now is how, what is the reason 

of bound on the y? 
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In particular, we want to know what is the value of k for which the probability that y is at 

least k is bounded from above by a half and, in order to understand the probability of this 

event we are going to bit conservative. Let us look at the bin with k balls, there must be 

at least k choose to pairs balls that collide just in that one bin. So, instead of bounding 

the probability that y will be at least k. We will be bit more conservative and we will 

bound the probability that the number of colliding pairs is at least k choose 2, but this 

event, it is this number colliding pairs needs to be modeled a bit carefully, for that we are 

going to use an indicator random variable X i j and that is X i j is going to take the value 

one whenever ball i and ball j land at the same bin, otherwise it is going to take on the 

value 0. 

So, X i j is a very natural choice to model colliding balls. Clearly the expectation of X i j 

is at most 1 over n because from our assumption that we are saying h drawn uniformly at 

random from 2-universal family of hash functions. We know that the probability with 

which ball i and ball j will collide is at most 1 over n. So, the expectation of the Bernoulli 

random variable X i j is going to be at most 1 over m. 
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And of course, our interest is counting the total number of collisions. So, with that being 

the case we define upper case x to be the summation of all these X i j’s and if we look at 

this way, the expectation of X is simply at most m choose two times 1 over n, which is at 

most m square over 2 n and since we have the expectation, we can now apply Markov’s 

inequality and using Markov’s inequality, we get probability that X is at least m squared 

by n is at most for the probability that X is at least twice the expectation of X, this m 

square by 2, m; remember is the expectation of X and that is of course, at most 1 by 2. 

So, remember our goal is to find the k such that the most loaded bin k as k or more balls 

in bins. 

We were in a bit conservative in bounding that probability, in order to get our value of k, 

we need to set k choose 2 to be at most m squared by n because k choose we do not 

want; we were bounding the probability that the number of collisions is at least k choose 

2. So, of course, k choose 2 we approximate that with k square by m by 2 and that leads 

us to the bound that k must be at least m times squared of 2 over m and this is 4, you 

know arbitrary choice of m, but if we restrict m to be exactly equal to n, we get k to be at 

least square root of 2 times n. This result must be viewed under the back that if we use 

uniform and mutually independent choice of bins for each ball then the height of the max 

loaded bin is going to be at most O of ln and over ln ln n. 



This is significantly worst, but it is still very general in nature. So, it is worst, it is no 

longer logarithmic, it is proportional to the square of n, but we were able to get this result 

using hash functions drawn uniformly at random from 2-universal family of hash 

functions. So, it is in that sense very general in its application. 


