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Estimating Frequency Moments 

 

Our topic for today is going to be estimating frequency moments. 
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So, let us setup the problem. We have here universe U and that ranges values that is 

saved our lots of generality 1, 2 and so on and we are receiving a stream of data items 

and each data item is drawn from this universe and, the first items shows up that is x 1, 

second items shows up x 2, third item shows up x 3 and so on up to x n and there can be 

reputations within these items such show up in the data stream.  

So, 1 way to think of this would be, for example, a data packets that go through node of 

the network and these x i’s could indicate the IP addresses, the source destination pairs of 

each IP address and this might be able to give you some information about the flow of 

information or data packets from the network and I show 1 example there are variety of 

ways in which we can interpret this stream of data and we are just interested in 

understanding the stream of data. 

In particular, we are interested in understanding what is called what is broadly called the 



kth frequency moments. So, let us pick an item j in the universe, f j denotes the number 

of occurrences of the item j in the stream throughout the stream from all the way from x 

1 through x m any time j occurs f j is incremented. Let say let us think of it that way now 

the kth frequency moment is defined as f k which denoted f k and it is defined as the 

summation over all items in the universe, hence use the presentation j, it represents the 

items in the universe summation over j f j raise to the power k as it turns out this notion 

of kth frequency in moment captures a large number of nice characteristics. Now, notice 

that k is the prime rate and as the prime rate varies we get variation insights about the 

data string. 
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Let us try to get the sense for what is this kth moment capture. We are not going to be 

completely thorough in our treatment; we are going to provide a broad burst stroke of the 

landscape of problems and ideas. So, what if what happens as k tends to infinity notice 

that the kth frequency moment, when k tends to infinity will be dominated by the most 

frequent term because the f j corresponding to the most frequent terms in j will be raise 

to the power infinity and that is going to be larger than that quantity is may be larger than 

the other frequencies raise to the infinity. Well, what about k as it goes towards infinity 

and so, based on this intuition what are we going to do, we just going to conveniently 

redefine f infinity, the infinity frequency node, the infinity frequency moment as just the 

frequency of the most frequent item. 



Let us look at the other extreme, what happens when k equals 0? Now, this begs the 

question, what is 0 raise to the 0 because what happens if there is a positive frequency? 

Well that would be raise to the power 0 and we know that that value is 1, but if it is 0 

raise to 0 well which is going to by convention use the value 0 for 0 raise to the 0.  

This is quite nice because now f 0 because 0th frequency moment counts the number of 

distinct elements because any element that has a non-zero frequency that item f j will be 

raise to the power 0 and will count as 1 and all items that have 0 frequency. On the other 

hand will not be counted, f 0 will discount the number of distinct elements. So, you see 

that f infinity has a nice interpretation f 0 also has a nice interpretation. 
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Let us look at k equals 1 and this simply counts the stream length the number of items 

that appeared in the number of times various items appeared in the stream because every 

time. So, think about this each item if it have appears f j times it will account f j towards 

the summation and so, when you sum over all the items these fj's will add up to the 

length of the stream.  

Now, we are going to talk about k equal 2 which is very interesting and it is perhaps the 

most interesting and important frequency moment just to be clear what talking about f 2 

which is summation over all items in the universe j f j square if you think about it this f j 

square intuitively measures, how much the f j's vary and is a. In fact, if you want to 

compute the variance of these f j values then this second I mean the second frequency 



moment is useful, but that is not all other some other surprising ways in which this will 

be useful. 

For example, in the day in databases if you have a table that you join with itself is the 

self joint and let say you join the table with itself based on a particular attribute the 

frequency of values that the attribute takes let say represent f j's then the size of the such 

joint is going to be given by this second frequency moment. So, think about why that 

would be the case. So, here we again see 1 more application. So, as you can imagine f 2 

shows up in a variety of contexts and so, it is just very interesting and important quantity 

to compute and as it turns out. 
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The first paper that talked about these frequency moments in the context of streaming 

sort of became a very seminal paper 1 that kind of opened up the floodgates for a number 

of different papers that appeared in this area. 

So, this is the paper by A lon, now lon, Matias and Szegedy appeared. I believe in STOC 

96 later as a in general version and JCSS 99 title being the space complexity of 

approximating the frequency moments. So, this is a big deal because this paper ended up 

getting the Godel prize in 2005 and this is a price given to the authors of papers that end 

up having a lot of influence over a period of time. 

So, another example of Godel prize winning paper is the prime it is in p paper by for 



professor and students. So, you can imagine that this prize is given to papers that have 

had significant impact both at the time that they were in publish as well as over a period 

of time because they usually are papers that have a lot of impact over a period of time 

and in this case the whole field of stream in algorithms was opened up and studied in 

depth in large part because of the beauty of this paper and the beauty of the algorithm 

that they have presented so. In fact, that is 1 of the algorithms that they presented is what 

we are going to talk about today in particular, we are going to whom right into the most 

interesting frequency moment the second frequency moment. 
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So, without further adieu, let us get to the second frequency moment. 
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Let us begin by an estimator that is basic estimator. This will not be the final estimator 

that we arrive at, but it will just help us get a sense what is going on and just reminder 

ourselves, we are estimating f 2 which is the second frequency moment. So, here is how 

the algorithm goes, now h is a hash function that takes elements from the universe and 

maps it to either minus 1 or plus 1 and such random variables that either take the value 

minus 1 or plus 1 are often called random occur with variables, so that is in a slide. So, 

we are going to assume that this h is drawn uniformly at random from a strongly four 

wise independent family of hash functions. Now, having drawn that hash function we 

initialize the counters z equal to 0 and now let the stream start. 

Now, the elements stream 1 by 1 and for each element. So, z 1 is goes from x 1 to x 2 to 

x 3 and so on and let say we have element x i at our hand. Right now what do we do with 

that we hashed that element using h. So, we get h of x i and then we simply increment z 

with h of x i now keep in mind h of x i can be either positive or negative and. So, some 

of the elements are going to incremented, some of the elements are going decremented, 

but keep in mind if there is an element that increments it, in other words h of x i is plus 

then h of x i will continue to continue to be plus 1 throughout the execution of this 

algorithm and vice versa, if h of x i that being negative then it is going to be negative 

throughout. 

Now, let the stream run through and we update z as and when a new item comes in and at 



the end, we simply returned z square as the required estimate of f 2. So, this is pretty 

amazing because at first sight, it is not clear at all as to why this algorithm works the 

only intuition that I can get at least is the following that z that starts off at 0 and then 

some elements randomly uniformly at random pull z to on the positive direction and 

other items pull that on the negative directions. 

So, there is the sort of a tug of war and in this tug of war if the frequency of items is 

about the same for all items then the tug of war is going to be even whereas, if some 

items are going to be having higher frequency then the tug of wars going to move either 

in the positive direction or in the negative direction. So, remember that f 2 is a measure 

that captures know how much the frequencies vary and this tug of war also does some 

about the same thing, but apart from that we really need to analyze the bit more carefully 

to really see what is going on. So, the first thing we need to do is to convince ourselves 

that is in fact, an estimator. In fact, we need ourselves is this even an unbiased estimator 

and what do we mean by that? 
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Is this z square that we are claiming is an estimator, what is this expected value, does that 

matching the expected value of f 2? If it does then it would be an unbiased estimator and 

it still would not necessarily be a good estimator because it depends on the variance of z 

square and how close it is to f 2 on averages and with high probability and so on and so 

forth. We are not even going there yet what we want for now is to establish that z squared 



is an unbiased estimator, in other words the expectations of z squared is actually f 2. 

So, let us establish that to begin with, the expectation z square is well and summation. 

So, let say let us just expand out z square that is nothing as z is the summation over all 

items in the universe h j times f j that is because each item pulls it either in the positive 

direction or the negative direction that depending on h j value for f j number of times that 

quantity that is z and the whole squared gives you z square, and now let us expand this 

out we will get two's 2 types of terms in the first type of terms, we will have h j squared 

and in this if you notice h j squared whether h j being plus 1 or minus 1 this squared term 

squared value is going to be a plus 1. So, in this case the h j’s can be essentially h j 

square can be replaced by 1. The other type of the other such terms are those which are 

of the form that that have that have not h j squared, but h j times h l, but j and l are 2 

different elements in the universe and as you can see when you apply the linearity of 

expectation and also apply the fact that h j square is simply just plus 1. The first type of 

terms give you this summation overall items in the universe f j square and remember this 

is simply our f 2, but we want to estimate and let us look at the second term. 

Now, the expectation has been brought and based on due to linearity of expectation and f 

j and f l are not random variables. So, they can be brought out h j and h gel h l are on the 

other hand random variables, but here is the interesting thing we remember, we have a 

four wise strongly four wise independent hash function here and h j and j l are 

independent of each other. So, the expectations the expectation of their product can be 

written as the product of their expectations, but each h j on expectation is 0 because it is 

plus 1 with probability half and minus 1 with probability half and as a result the 

expectation of h j or h l for that matter they are all going to be equal to 0 and this product 

ends up being a 0 which means that this entire term vanishes and we are left with just f 2. 

So, this is pretty neat, the estimator that we have as an unbiased estimator, but that is, 

obviously, not all what we really want is a good epsilon delta approximation. What do 

we mean by that, for these particular epsilon and delta values we want to ensure that our 

estimate is within an epsilon fraction of the true value f 2 with probability at least 1 

minus delta and for this we need to be a bit more careful, but does this is from now on 

these are techniques we have seen before. So, what is our road map? Now, we simply 

repeat the basic estimator in parallel several times and we take the average and this will 

mean that we can by this means; we can reduce the variance and then use Chebyshev’s 



inequality to get the required epsilon delta approximation. 
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So, for that first let us figure out what the variance is of z squared just a basic estimator 

because we need to know how much we need to reduce it. So, for that we need to know 

how much we already have just in the basic estimator the variance of z squared has these 

2 terms and the second term is e of z squared the whole square.  

What is the e of z squared? Now, we already know what that is that just f 2. So, the 

second term is really f 2 square, so that once already done our worry now is about e of z 

to the 4, what is this e of z to the 4? Well, that is let us expand it out it is going to be the 

expectation over the summation over items in the universe we use j denote these items 

and it is summation over h summation over j h j f j that is z, but then this whole 

summation raise to the power 4 will be our z to the 4 and if we have the patience to 

expand this out we are going to get a long series of terms. 
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In particular we are going to get some cardinality of e raised to the power 4 terms. So, 

that is pretty long and boring in some sense, but let see there is some pattern and 

emerges. 

Let the terms can have 1 of 2 forms. Now, there could be there is a possibility there is 

some of the terms are going to have 1 of the indices. Now, notice that these terms are of 

the form h j 1 h j 2 h j 3 h j 4 times f j 1 f j 2 f j 3 f j 4 and these indices j 1 j 2 j 3 and j 4 

can take on any value from u cross. Now, if there is an index value that is appearing that 

is different from the other three index values then we have something nice happening the 

entire terms simply vanishes, why because when we take the expectation of the product 

we can apply the fact that itself, we have a four wise independent hash function. 

So, it ends up being e of h j 1 times e of h j 2 times e of h j 3 times e of h j 4 and let say j 

four without loss of generality is the index that is different from all others that e of h j 4 

will end up being 0 because as we just mentioned a little while ago the expectation of 

any 1 h j 4 is going to be 0 because it is either plus 1 or probably half minus 1 probably 

half. 

So, all of those terms and which there is at least 1 index that is different from all others 

are going to vanish. So, what are we going to be left with we are going to be left with the 

cases where the indices are either pairs or quadruples meaning. So, either of the form h 

of j raise to the power 4 or h of j squared times h of l squared. So, i am calling h of j to 



the power 4 as quads and h of j squared times h of l squared as pairs, but of course, we 

know that h of j squared is going to be plus 1 h of l square is going to be plus 1 and 

similar way h of j raise to the power 4 is also going to be plus 1. 

(Refer Slide Time: 26:10) 

 

So, we can simply write this e of z to the power 4 as summation over j f j to the power 4 

plus 6 times summation over all pairs j and l f j square f l square and where is this 6 

come from, we get the 6 from the following reasoning. 

Now, we have 4 indices, out of these 2 of them are j’s the 2 smaller ones and then 2 of 

them are l’s now given a particular j and l we have 4, choose 2 locations or pairs of 

locations in which the j values can fall and that is why we have the 4 choose 2 over there 

and as a result we get 6 coefficient here, but let us recall what f 2 is. So, remember that 

we have reached certain value certain expression for e of z to the 4 in order to proceed 

just let us look at what f 2 squared is what is f 2 square is just the summation over all j f j 

squared the whole square and of course, when we expand that out we get summation 

over j f j squared plus twice the summation over all j and l f j squared f l square this 

means that 3 times f 2 squared is going to be certainly larger than what we have over 

here. 

So, we apply that bound to get required bound on e of z to the 4. So, e of z to the 4 is at 

most 3 times f 2 square and now going back to the variance of z squared, we can apply 

our bound on e of z to the 4 and that is going to be 3 f 2 squared and we already know 



that e of z squared the whole square is f 2 square also. So, that is going to this variance of 

z square ends up being at most twice f 2 squared. 
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So, just reminding ourselves, the road map we now have a handle on the variance of z 

squared for the basic estimator. What we need to do is figure out how to repeat it in 

parallel and remember this variance is too much, we need to be able to reduce the 

variance a little bit and for that we will repeat this basic estimator and in repeated and 

there therefore, reduce the variance to a convenient value, so that we can then apply 

Chebyshev's inequality in order to get the epsilon delta estimator that we want. 
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So, here is our final algorithms, we are ready to state the final an algorithm and as you 

can imagine this is simply the basic estimator just repeated in parallel several times. In 

particular, we are repeating it t times and what is their exact value of t that is going to be 

fixed later and recall these hash functions h 1, h 2 up to h t are all drawn uniformly at 

random from a strongly 4 wise independent family and these hash functions map the 

universe to either plus 1 or minus 1. So, now, instead of 1 counter that we have 

previously we had just z. Now, we have the z i’s where i ranges from 1 to t and as each 

allow the stream to pass by as each item in the stream arrives you look at the item and 

you hash the item using each of the of the t hash functions. 

So, for example, when you hash using h i you get h i of j you add that to z i that is the ith 

counter and you get the new update of z i and you can see do this for all the i and after 

the stream as gone by we are left with t counters with various values and then we simply 

square each of the z i’s and take the average of those squared values and that is going to 

be our estimator. This is our final estimator and we need to show that this final estimator 

it has all the properties that we need, for example, we already know hat this is an 

unbiased estimator, but we need to be able to prove that this is an epsilon delta 

approximation of f 2. 
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It is a matter of figuring out what the appropriate t value is this? Once, if we repeat an 

appropriate number of times the variance is going to come down sufficiently. So, really 

that is the only question at hand. So, what is the variance of y and that is just the variance 

remember y is just z 1 square plus z 2 square and so on up to z t squared divided by t this 

is the average of the sum of squares and. So, you get the t outsides you get 1 over t 

squared times the variance of the summation of squares, but keep in mind that each 1 of 

these z ones z 1 z 1 square z 2 square, they are all essentially the basic estimator. So, 

their variances are the same and so, you can simply think of it as t times the variance of z 

square. 

So, there will be a t in the numerator and t square in the denominator. So, we end up with 

1 over t variance of z square and we already know that variance of z squared is at most 

twice f 2 squared. So, variance of y is it most twice f 2 squared divided by t. So, what 

you can see is as you increase t and the variance of y keeps decreasing. So, that is useful 

for us. Now, we are ready to apply our Chebyshev’s inequality. So, let us apply 

Chebyshev’s inequality, what is the probability that y minus the expectation of y is 

greater than an epsilon fraction of f 2? Remember expectation of y is this f 2. 

So, it is really what we are asking is what is the probability that y deviates from f 2 by 

more than epsilon times f 2 and direct application of Chebyshev's inequality is going to 

say that it is variance at most variance of y divided by epsilon f 2 and up applying the 



fact that variance of y is 2 at most 2 f 2 squared by t, we get this expression over here 

and we have some cancellations is the f 2 squared terms cancels out, we are left with 2 

over t epsilon square and we want that 2 over t epsilon squared to be delta that is the 

probability the of the bad event where the random variable the y value exceeds. It is 

epsilon approximation range and so that has to be at most delta which means that we will 

get that requirements satisfied, if we set t to be at least 2 over epsilon squared delta 

which is all that we really need. 
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So, really with that we can conclude that the final algorithm that we stated a little while 

ago with t value set to 2 over epsilon square delta is guaranteed to output an estimate y of 

f 2 that ensures that the probability y deviates from f 2 by more than epsilon times f 2 is 

at most delta. So, this is exactly what we wanted and we have that. So, this is a very nice 

clean algorithm for what which is quite surprising because at first sight at least this 

problem does not come across like as having such a clean algorithms quite surprising, 

but we do have such an algorithm and very clean simple analysis which is well.  

So, that brings us to the conclusion of this lecture. 


