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Testing Connectivity 

 

Hello everybody. Let us start the second segment of our lecture on property testing. We 

are interested in designing an algorithm and analyzing it, the test whether a given graph 

is connected and recall that the graph will be stored in some sort of a cloud. 
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So, we will not have full access to the graph rather we will have access to the graph by a 

queries and in particular, we have three types of queries that we can send to the cloud. 

The first query will request a random node in the graph, the second query request for the 

number of neighbors of a particular node v and the third query request for the say the 

fifth neighbor of a particular node v. These are the types of queries that we can make on 

these large graph stored in the cloud and the cloud will respond with the appropriate 

responses and we need to test whether this graph is connected with as few queries as 

possible. 
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Of course, when the graph is connected we want to accept it. Normally, property testing 

only requires us to accept this scenario with probably the at least two thirds. In our 

context however, we are going to design an algorithm that is always going to accept a 

graph if it is connected. So, in order words this algorithm that we are going to designing 

is going to have a one sided error. If, however, the graph is far from being connected the 

algorithm we design we are going to design now will reject the graph with probability at 

least two thirds and what is it mean for a graph be far from being connected. 

Well, this fix with the notion of being far from having a property that we already 

discussed in the first segment. The graph is epsilon far from being connected if at least 

epsilon m edges must be added to establish connectivity. So, the graph is highly 

fragmented if it is epsilon far from being connected and in order to defragment and if 

you where and get the graph to be connected, we will have to add edges and in particular 

we will have to add epsilon m edges in order to establish connectivity this is one little 

except of that we need to note.  

Let us assume that epsilon is fixed and let us assume that the graph is epsilon far from 

being connected then we can conclude that the number of edges is only of the order of n. 

Now, why is this case? Suppose, m is little omega of n, in this case epsilon m is also 



going to be little omega of n in which case we immediately notice that this epsilon m 

number of edges is going to be sufficient for us to get the graph to be connected. 

So, we simply cannot have the graph that is epsilon far from being connected having 

number of edges that is little omega of n. So, as a result we can say, if a soon that we are 

dealing with a parse graph with at most O of n edges. Our goal is, of course, to minimize 

the query complexity, basically the number of queries that we need in order to be able to 

answer whether graph is connected or not. 
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A main philosophy behind our algorithm is the following. We are going to assume this 

sort of innocent until proven guilty, paradigm of thought meaning we are going to 

assume that the graph is connected and we are going to seek evidence that is not 

connected and until we find such evidence. We are going to say that the graph is 

connected, and when we do find some evidence not connected that is only then will be 

say that the graph is not connected as a consequence this the algorithm that we design 

will always be correct, when the graph is connected because we cannot find evidence 

which is not connected. So, and more over if we say that the graph is disconnected then 

we will only say that is disconnected. 



When we have clear evidence it is actually disconnected. So, let us a little deeper look at 

intuition behind the algorithms, if the graph is epsilon far being connected then the graph 

will contain a lot of small components because a lot of edges need to be added to graph 

before we can get it connected which means that the graph is very, very fragmented and 

because the graph is fragmented, we want to say that not only other lots of components, 

there are lots of small components and so random sample Intel, the set of vertices is 

could very well with the good probability land us on such a small component. 

Now, if we land on such a small component then we should be able to find evidence for 

this graph being disconnected because if we land in a small component a very small BFS 

should tell us, whether we are in a small component or a large component and so you are 

lucky enough to land in a small component and we perform the small BFS, we should be 

able to prove the guilt meaning, we have being able to prove that the graph is 

disconnected and this is the main intuition. So, let us look at the algorithm in greater 

detail. 
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The algorithm is iteration over a set of steps, for now, I were let us ignore the number of 

or at least let us not get distracted by the number of reputations. So, we are going to 

perform some number of reputations and each reputation is the following. We are going 



to pick a vertex v uniformly at random and this is done under the hope that we will are 

random choice will land in a small component and from that vertex v, we will perform 

BFS visiting at most some number of vertices and this is designed to be this is over 

notion of small. 

We will formalize these things shortly, we perform a BFS and that visit at most these 

many numbers of nodes, if the BFS terminates that, if the BFS queue becomes empty; 

that means, we have actually reached a small component in which case we will reject g 

because we now know that the graph G is disconnected now. After these many of 

reputations, if we are not able to find any evidence at all that the graph G is disconnected 

then we will come out of the loop and we will accept G. So, this is the algorithm and as 

you can notice the algorithm itself is very, very simple. We now have to formally prove 

that are algorithm in deed accepts all connected graphs and rejects graphs that are far 

from being connected. 

(Refer Slide Time: 09:46) 

 

So, in particular this is the theorem that we need to prove the connectivity testing 

algorithm requires O of n cubed over epsilon cubed n cubed number of queries and just a 

quick note about this, when m is O of n, the number queries is actually only O of 1 

assuming epsilon is a fixed constant. Now, with that many queries our algorithm we need 



to show that our algorithm is always correct, when G is connected and it is correct with 

probability at least two thirds, when G, the practice epsilon far from being connected this 

is the theorem that we are going to prove and the overview of the proof is as follows. 

We all is quite obvious this algorithm this always going be correct when the graph is 

connected simply because it is, if cannot find any evidence of being disconnected. So, 

our focus therefore, is going to be on graphs that are far epsilon, far from being 

connected. So, the sequence of steps in this proof is as follows, first we will prove that 

there are lots of components in the graph h, if its epsilon far from being connected and 

then we will go on to show that many of those components are actually small and will, of 

course, define small quite likely and then will go on to show that a randomly chosen v is 

likely to be in a small component.  

Therefore, leading us to the evidence that we are seeking and we will is in the third step. 

We will work out the probability with which we will land in a small component and 

therefore, the probability with which our overall algorithm is going to be correct. So, this 

is the overview of our proof. Let us go on through the first step in this proof sequence. 
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Our first lemma is to show if the graph G is epsilon far from connected then G has lots of 



components and we have illustrated that by this figure shows all these components and 

here seen this the quick intuition. If it is epsilon far then we are required to add at least 

epsilon m edges before the graph can be connected and now, if very few components we 

can simply string them together as shown in this figure and we should be able to connect 

the entire graph. So, the proof relies on quantifying the number of such edges that we can 

add and therefore, the number of components that we should that the graph should have. 

So, let us be a little bit formal now. 
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If the graph G is epsilon far form connected then G has moved than epsilon m plus 1 

connected components and the proof is as follows. Suppose, there is, if number of 

connected components is at most epsilon n plus 1 then at most epsilon m edges are to get 

string the components together and therefore, get them to be connected that this would 

mean that the graph G is not epsilon far connected because epsilon far would mean that 

we have to, we require more than epsilon m edges to for connectivity. So, this establishes 

the contradiction that we are seeking and therefore, we can conclude the lemma. 
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Now, that we know that graph that is epsilon far from being connected has lots of 

components. We want to show that not only do we have lots of components, but more 

over we want to show that we have lots of small components. 
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Let us be able to more precise with what we want, If G is epsilon far from connected 



when more than epsilon m by 2 components. Now, recall that there are at least epsilon n 

plus 1 or rather than more than epsilon m plus 1 component. In this graph and are we 

want to show that more than epsilon m by 2 about half of them at least are small and 

what do we mean by small these are components that have no more than 2 n over epsilon 

m nodes in them. Let us go into the proof now.  

Again, we use proof contradiction suppose not; that means, there are at least epsilon m 

by 2 components that are large. Now, if there are fewer than epsilon m by 2 small 

components then they must be epsilon at least epsilon m by two large components and 

there are components with strictly more than 2 n over epsilon m nodes. 

So, how many nodes are there in these large components? All this work it’s going to be 

well we have at least epsilon, I mean epsilon n by 2 component and each one of those 

components has more than 2 n over epsilon m about. So, that is 2 n over epsilon m. So, 

just that accounts for more than n nodes and that is simply a contradiction again. The 

graph itself is to be started-off with only n nodes. So, you we cannot have at least epsilon 

m by 2 large components, which mean that more than epsilon m by 2 components must 

be small. 
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So, with these as in our background, we are now ready to prove the main theorem. So, 

just recall more than epsilon m by 2 nodes are in small components and each of these 

small components must have at least one node. Each one of these must have at least one 

node. So, what is the probability of a randomly chosen vertex v, not being in a small 

component? Well it must be at most 1 minus epsilon m by 2 n, why is that? Because what 

is the probability that we will vertex v will be in a small component well each of these 

small component has at least one vertex and there are epsilon m by 2such vertices at 

least.  

So, probability of landing in such a small component is going to be greater than or equal 

to epsilon m by 2 divided by the total number vertices that we have which is this is the 

probability of landing in a small component. So, the probability that v is not in a small 

component is at most one minus epsilon m by two n. So, this is one particular vertex v 

that was chosen uniformly at random. 

If you recall the algorithm we repeated this 4 n over epsilon m number of times. So, what 

is a? This is the. So, let us look at the probability that none of the 4 n over epsilon m 

random nodes will land in small components. Now, this is really bad because we missed 

all the small components not once, not twice, but 4 n over epsilon n times. So, this is a 

really bad event, but what is the probability of that bad event well probability that it 

occurs once is 1 minus epsilon m by 2 n, but 4 n over epsilon m number of times means 

that the four n over epsilon m goes to the exponent.  

So, if we apply this in equality minus x is at most e to the minus x this can be. This 

probability can be brought down to e or the minus 2 and of course, e being something 

like - 2.71 so on. So, etcetera we is easy to see e to the minus 2 is less than one third 

which is the probability that people not find evidence all over random vertex probes 

landed in in large components not in small components. 

So, we missed this is the probability this is an upper bound in the probability that we 

need all the small components not once twice, but all four n over epsilon n times and. So, 

this is the probability of missing. So, the probability that we actually are algorithm will 

correctly land in a small component and find evidence that we are. In fact, in a 



disconnected graph is therefore, going to be at least two-thirds. So, that completes the 

part of the proof regarding the correctness of the algorithm. The number of queries is 

quite easy to show and. So, that is going to be an exercise for you. 
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Before we conclude let us have a quick discussion on what we have studied. So, for just 

to remind you, when m is O of n, the number queries is only O of epsilon to the minus 3 

and if epsilon is also fixed, we are taking about a constant number of queries and with 

this constant number of queries, we are able to with reasonable probability detect 

whether the graph is connected or epsilon far from being connected and this works 

straight we are able to get probability of correctness of at least two thirds, but is actually 

not very difficult get that the probability of correctness down to a much smaller value. 

For example, we can get the probability down to something also form 1 by k for any 

arbitrary k value, we just epsilon to the minus 3 with O of epsilon to the minus 3 times 

lock k queries. So, this will be a small exercise for you to show that this is in fact, true.  

With that, let us conclude the second segment of our lecture on property testing our third 

segment is going to be on linearity testing. 



Thank you very much  


