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Lecture – 41 

Testing Bipartiteness 

 

In this last segment, we are going to look at the problem of testing whether a given graph 

is bipartite or not. And of course, we are again in the dense craft model which means that 

the type of queries, we can ask are of the form, is there in edge between these 2 vertex U 

and v.  
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And you see those queries, we must ask the question whether the graph is bipartite type 

that is remind us, what we mean by a graph being a bipartite graph such a graph must 

have a partition of its vertices into sets v 1 and v 2, such that the edges are sub sets of v 1 

cross v 2. So, the edges can only be of the form where they connect 1 vertex from the 1 

and 1 vertex from v 2, but unlike the biclique does not have to be exactly v 1 cross v 2 

and well known property of bipartite graph is that there it does not exist any cycle in the 

graph G.  



In fact, these 2 statements are equivalent, the statement of G is a bipartite graph is 

equivalent to saying that the graph does not have an odd length cycle an exploiting this 

property. We can arrive at a linear time shall we say BFS based algorithm testing 

bipartiteness basically just test whether there is any cycle that is of odd length then it, but 

obviously, this is for our purpose because serve executing BFS would mean that we need 

linear time then any number of queries and that is not acceptable. 
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So, we have to be in the realm of sub linear testing and for this purpose, we will need a 

promise and the promise should be that either the graph G is bipartite or its epsilon far 

from being bipartite graph which means that more than epsilon n square edges must be 

removed in order to make the graph bipartite. 

Notice that we only need to remove edges in order to make it bipartite because we really 

do not need to add any new edge because for bipartite graph. The edge set e only has to 

be a sub set of v 1 cross v 2 and the as we mentioned earlier we are only allowed queries 

of the form is there an edge between 2 vertices say vertex U and vertex v. So, let us 

further little look at the algorithm to test where the graph is bipartite in this sub linear 

setting. 
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So, algorithm is very simple. We simply sample data of 1 over epsilon square times log 1 

over epsilon number of vertices uniformly at random the constant hidden within the data 

annotation can be reverse engineered later. So, we are not going to write much about the 

constancies. In fact, this whole segment we are going to purposefully be a bit sloppy in 

order to focus on understanding what is going on and we will work out these constancies 

part of our exercises later. 

So, we sample these many vertices and after we have sampled these vertices we will 

query all possible pairs vertices from the this sample and in and by doing that we will 

construct the induced sub graph of those sampled vertices and then we will just test 

whether that induced sub graph is a bipartite graph or not and this we can do using BFS 

member. We can we have a linear time algorithm using BFS, but at this notice that this is 

a linear time algorithm on a graph that is of size roughly square of epsilon to the minus 2 

log 1 over epsilon and. So, that is still very much sub linear in terms of the larger graph 

that we are concerned about. 

Now, we test the bipartiteness of this induced sub graph and if it is bipartite we accept 

otherwise we reject and of course, a verdict of accept or reject must hold in this in the 

larger input graph on n vertices. So, you may wonder where is the enforced part in the 



biclique case we had a clear enforced step, and a test step as a out in this case the 

enforced step and the test step are both blended and really it is the analysis that we 

separate them out. So, we will see that in a little while, but for a now let us on purpose 

make the missed step a wrong attempt to few will just a sort of get a sense for why we 

even need this enforce and test approach to analyzing this algorithm. 
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Notice, of course, of the algorithm always going to be correct when g is bipartite and. So, 

in like in many other such properties, property testing context we do not care, much 

about getting the right answers when the property holds we are more concerned about 

being able to reject when the property does not hold. So, for that purpose we are going to 

assume that the graph G is far epsilon far from being bipartite and now we have to show 

that the algorithm will reject such a graph with some good probability under that 

assumption consider a partition v 1 and v 2, we guarantee that the more than epsilon n 

square violating edges and these are edges there are going between vertices there are 

both in v 1 or both in v 2. 

Here is a quick exercise for you, what you need to show that if you sample 1 over epsilon 

times log 1 our delta samples you will hit such a violating edge with probability at least 1 

minus delta. So, for this you will have to look at the probability that each sample and 



here we are sampling edges in some sense each sample be a violating edge with 

probability epsilon and. So, within each sample will not be violating edge with 

probability 1 minus epsilon and we have 1 over epsilon times log 1 over delta such 

samples. What is the probability that all of them do not reveal a violating edge that will 

be we need to show that will be probe that will be of probability delta.  

So, with probability 1 minus delta we will be able to find a violating edge. So, spend 

some time to work out those detail ones you convinced yourself that is the case lets step 

back and look at what we have achieved we have shown for a specific partition that we 

will be able to hit a violating edge with probability at least 1 minus delta that is greats for 

1 partition. 

But we really need to be concerned about every possible partition and here lies the 

problem because a number of partitions is a 2 raise to the cardinality of the vertex set and 

union bound is the only option at a disposal right now and that is not going to work. So, 

the probability of the failing is at most delta, but then if you more supply 2 raise to the 

cardinality of v times delta and still want that to be at small constant and delta must be 

extremely small and if you think about it delta has to be like 1 over 2 raise to the 

cardinality of v then log of 1 over delta is going to be log of 2 raise to the cardinality of v 

and that is going to be linear number of samples linear in the number of vertices that is 

just an unacceptable number of sample we want our algorithm to be able to upgrade 

under far few number of sample. 

So, with that being the case we have to think about how we can we can have an enforce 

part and then test against what this being enforced in the enforced part. 
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So, this leads us to the second correct attempt. So, just a little quick post mortem on 

attempt 1 the failed attempt we were not able to reign in the 2 power cardinality of v 

number of degrees of freedom of that we had in partitioning the vertex set. So, we have 

the there is lot of structure which we need to able to exploit and. So, we are going to do 

that following remember the enforced part is implicit what we are going to do is just the 

first few queries as enforce our queries, and thought those first few queries will create a 

structure, and then the rest we used to test against that structure and this is the quite 

nicely analogize to the balls and bins way of analyzing that we had before. 

The algorithm i mean, the process was same for all 2 squared of n number of balls, but 

for the analysis purposes we set the first 2 first squared of n balls separately created 

structure, and then looked at what happened through the next squared of n balls. And 

this, what we are doing here is very similar the first few queries were going to enforce a 

structure, and then on 1 even though the algorithm does not change we in the analysis we 

look at the structure that is enforced by the first few queries and then use a subsequent 

queries to test against that enforced structure. 
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So, let us look at it bit more carefully. So, we are going to call the set of first data of 1 

over epsilon log 1 over epsilon queries as the set U these this is the part that is going to 

enforce a structure. 

Let us pick by partition U 1 comma U 2 of the set U in. So, the moment we have U 1 and 

a U 2 we are going to assume that U 1 and U 2 a had chosen such that there are no edges 

between vertices in U 1 or no edges between vertices in U 2, if we cannot find such a 

partition then were already done the graph is no longer bipartite graph. So, we found a 

violation, but let us assume that we could not find violation and. So, we have this U 1 

and U 2 how could we subsequently find and this creates a structure some vertices are 

now in the left in U 1 and some vertices in the right in U 2 there are lot more vertices in 

the graph, but how do we find an violation against the structure there are 2 ways in 

which this can happen 1 is you can find in the vertex x such that x has a neighbor in U 1 

and the neighbor in U 2 if that is the case then U 1 and U 2 cannot be a valid partition. 

So, that is 1 way to find a violation there now a second way to find a violation either. So, 

you find an edge x 1 comma x 2, but x 1 happens to be neighbor of some vertex in U 1 

and x 2 happens to be a neighbor of some vertex in U 2 and this again would be a 

violation. 
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So, our goal with rest of the queries is to be able to find 1 such violation and remember 

U 1 and U 2 create a structure. So, what we are going to do is look at the settle set U 1 

and in particular spot all the neighbors of set U 1, let us call that set w 2 along with U 2 

we bunch that together and call it is set v 2 this is the 1 part of the partition the entire 

graph and all other vertices we place in v 1. So, U 1 and w 1 shown here in orange 

together from v 1 and you are going make a simplifying assumption that is certainly not 

true in general, but however, it to keep analysis simple and it is actually a fairly easy 

assumption to remove later. So, we are going to remove that assumption as part of an 

exercise, but for now we are going to make this assumption that every vertex other than 

the ones in U 1 and U 2 - have a neighbor in either in U 1 or in U 2. 
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So, the rest of the analysis is going to be based on that assumption and lets recall that 

vertex x would be a violating node basically in evidence that this partition will not work 

as the bi partition if it is a neighbor to a vertex in U 1 and also a neighbor to vertex in U 

2 over another way to find the violation would be a pair of vertices x 1 and x 2 such that 

1 of them as such that both of them neighbors of U 1. So, they actually have to be in set 

w 2, but they in the pairing an edge between them n a violation and when either 1 of 

these violating structures are queried the algorithm essentially eliminates this partition U 

1 comma U 2. 
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But keep in mind that there are total of 2 raise to the cardinality of the U number of 

possible partitions of the set u. Now, we must ensure that not only is this set U 1 comma 

U 2 is eliminated we must ensure that our queries are strong enough to eliminate every 

partition possible partition of the set U and keep in mind that this whole thing is 

operating under the assumption that the graph is. In fact, far from being expand from 

being a bipartite graph and. So, we need to the second part the test part should be strong 

enough to reject all these 2 power U possible partition and the goal is for each of these 2 

power U possible partition should be able to find a violating structure either x or the edge 

x 1 comma x 2. 

Now, for this purpose we set the test part that is the set w which is the next set of data of 

epsilon to the minus 2 log 1 over epsilon number of vertices queried after the U and we 

treat them as pairs because we want to either an x or x 1 comma x 2 for simplicity we are 

going to treat this set w as pairs. So, each pair could either include an x as evidence 

against bipartiteness or include a pair x 1 comma x 2 which will again be evidence 

against the bipartiteness. 
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So, now what is the probability of a not finding an x. So, this must be an x by the way 

what is the probability of not finding an x or an x 1 edges from x 1 comma x 2 these are 

witnesses against this particular partition U 1 comma U 2 in all of the 1 over epsilon 

square log 1 over epsilon query this is the set of all queries in w the second set of the test 

set, and that is going to be 1 minus epsilon raise to the data of 1 over epsilon square log 1 

over epsilon which we can work it out will be o of 2 raise to the minus U and of course, 

we with the appropriate constancy embedded in to this these data annotation we can 

bring this probability down to a small constant and this will be this small constant will be 

the probability of not detecting bipartiteness. 

So, this gives us the overall idea. So, in the first part we basically remember we were 

focusing on graphs that are epsilon far from being bipartite and the first part is the first 

set of U queries and that we have basically enforce a structure and there are now we 

focus on 2 power cardinality of U number of partition U pick partition U ensure that with 

some very low probability o of 2 raise to the minus cardinality of U probability U ensure 

that the bipartiteness, we missed the bipartiteness, we miss finding evidence for the 

bipartiteness.  



With such a small probability which means that we will missed we will not detect the 

nonbipartiteness with again very slow probability even when we are consider all the 2 

power cardinality of U number of partitions and. So, over all the probability that we will 

not detect will be brought down to a constant and that is exact a small constant that is our 

final goal which we have achieved. But there are few details need to be worked out. 
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So, there are 2-2 exercises that we need to be complete first 1 we need to reverse the 

engineer analysis to ensure the algorithm detects non-bipartiteness with some reasonably 

good probability, say 5 over 6 and then in this step is fairly easy then the interesting 

challenge would be to remove the assumption that we made. Remember, we made the 

assumption that all vertices that are not in U are neighbors of U; we need to ensure that 

that assumption is removed and that will again will be an exercise that we will work out. 

So, this brings us to the end of our lecture on this enforce and test technique for property 

testing that especially is useful in the context of dense craft property testing problem. 


