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Lecture - 43 

Testing if a Graph is Bipartite 

 

In this segment of our lecture on Random Walk space Algorithms for property testing we 

are going to look at an algorithm to test whether a given graph is either bipartite over far 

from being bipartite. 
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We are going to be using random walks, but we need to be a bit careful here because we 

dealing with the bipartite graphs. Now let us assume that the graph is d-regular and let us 

possibly a bipartite graph because one of the two options that we have in the promise 

given to us that is either bipartite or far from being bipartite. And, we also have the 

promise that a random walk on this graph will mixed rapidly, but we need to be bit 

careful here because the traditional random walk is actually a periodic Markov chain in 

this context because the graph could be a bipartite graph 

Now, how do we ensure that it becomes aperiodic? And for that we are not going to use 

the traditional random walk rather we are going to use what is called the lazy random 

walk. So, let us consider a vertex v and it has degree v number of edges incident added it 

could be, it is d regular degree will be exactly d but even otherwise you can think of d as 



being an upper bound on the degrees and so the individual degrees can be something 

between 1 and d. So here is a vertex v with degree be number of edges incident added. 

So, the question now is how we are going to assign the transition probabilities. What we 

are going to do is we are going to instead of transitioning with probability 1 over the 

degree of the vertex v we are instead going to transition to neighbors with probability 1 

over 2 times d where d is the max degree. So every edge incident at v gets a probability 

of 1 over 2 d. But this leaves us with some remaining probability and with that 

probability 1 minus the degree of v over 2 d, so this is the probabilities that have been 

exhausted by considering all the edges incident that v. 

So, one minus of that is the remaining probability and with that probability which is 

going to remain in the vertex v. You can see why such a random walk is called lazy 

because there is a probability of at least half that the walk will actually stay in the same 

vertex, it would not move here with that much probability. And the important thing to 

keep in mind is that no longer is the Markov chain periodic. You may want to pause for 

the little while to convince yourself of this a fact. 
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We are now ready to dive into the problem so let us make sure we understand the 

problem statement precisely. The input is a graph G equals V comma E in the bounded 

degree model. And in this model a queries are of the form what is the ith neighbor of 

vertex v. Also we may need to also find out what the degree of each vertex v is. So this is 



the bounded degree model in property testing for graphs. We are given two promises; the 

first promise that the graph G is either bipartite or far from being a bipartite. What 

exactly do we mean by far from being bipartite? More than epsilon d n edges must be 

removed to make G bipartite. And here epsilon this some fixed constant greater than 0. 

The second promise that we have is that the lazy random walks mix quickly in this 

graph. In particular the promises that lazy random walk as we described just while ago 

will mix within O of one over epsilon poly log of n number of steps which recall. What 

does it mean for a random walk to mix, it just means that the random walk will reach a 

probability distribution is very close to the stationary distributions within this amount of 

time. 
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So here is algorithm that we have for this problem and you may want to recollect that the 

graph is bipartite if and only if it has no odd-cycle in it. We are going to really take 

advantage of that and for that here is the key subroutine in this algorithm there the 

subroutine is called Odd-Cycle. So how does it go, we first pick a node in the graph and 

the node let us say chosen uniformly at random. Now we perform some number of lazy 

random walks. In particular we will be performing squared of n times polynomial in 1 

over epsilon log n number of random walks starting from s. 

And each of these random walks will be of length L and that L is going to be polynomial 

n 1 over epsilon times log n. And recall that this is going to be sufficient amount of time 



for the random walk to mix. So, we are going to generate k such random walks, and there 

were observe something about these random walks. We are going to see if there exists 

some vertex v, such that this vertex was reached by both an odd and an even length 

random walk. Here something that we need to be a bit clear about. Now let us go back to 

the notion of lazy random walk, what we are counting as the length of the walk is the 

actual number of steps taken excluding these self loops that we have over here 

So coming back to the algorithm here, the walk that are actually made L steps need not 

actually be of length L because there could be several self loops invoked. And what we 

are interested in is the length without the self loops being considered. There are two 

possibilities either that length can be odd or even. We want to know whether there was a 

vertex v that was reached by both an odd and an even length prefix. If such vertex v can 

be found then clearly what we can conclude is that there exists an odd-cycle. 

So, we will return same we found an odd-cycle in which case eventually we will reject 

this graph. If we did not find such a vertex v then we will have to show subsequently that 

it is likely that this graph does not have an odd-cycle and therefore we will just return for 

now that there is no odd-cycle. 
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Now, what we do this we just embed the odd-cycle subroutine within a rapper. All we do 

in this rapper is that we execute the odd-cycle subroutine some O of one over epsilon 

times and then we wait to see if there is any one odd-cycle call that comes back with 



saying that it found an odd-cycle. If it found an odd-cycle then we will immediately 

reject. On the other hand, none of the calls to odd-cycle came up with the found return 

value. That means all of them came with the not found return value from the subroutine 

then we will accept this graph as being a bipartite graph. 

(Refer Slide Time: 10:00) 

 

Of course, clearly this algorithms always going to correct the input graph is bipartite. So, 

moving into analysis all we need to do is focus on proving the graphs that are epsilon far 

from being bipartite would be rejected, and this we will want to reject with some 

constant probability let us say to two thirds. 
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Now, recall that the type of random walk we used is the lazy random walk and we pick 

the vertex s and we started making a random walk and eventually landed at some vertex 

v. And along the way we might have taken several self loops which we are simply not 

going to count in terms of the length of the walk from s to v. Now the length of the 

random walk, the number of steps taken by the random walk is some polynomial in small 

type of here polynomial n log n over epsilon. 

So with that let us look at this random walk let us look at the characteristics little 

carefully. Let us denote by P v, the probability that the random walk will terminate at v. 

Remember this we assumed that the random walk was of the lazy type. A quick exercise 

for you is to convince yourself that such a lazy random walk will actually have stationary 

distribution that is uniform over all the vertices. Now you may want to pause and 

convince yourself that is the case. 

Now, having convinced yourself that the stationary distribution under the lazy random 

walk is actually the uniform distribution, and fact coupling that with the fact that our 

random walks have a walked for mixing time number of steps, we can assume that P v 

the probability that the random walk will be at v is close to 1 by n. In particular let us say 

that it is within half of 1 by n to at most twice of 1 by n. Now, this P v we are going to 

break their up into two parts. Remember we want to eventually argue something about 

walks that took an even number I mean walks of even length versus odd length. So, what 



we are going to do is we are going to break up P v into two parts. 

P v with a superscript E refers to the probability that the random walk will terminate at v 

and the walk length, and this is the another random walk number of steps by the random 

walk taken by the random walk, but the walking length which is obtained by ignoring the 

self loops is even. So, this is the probability that you started at s and you may the L 

length random walk including some self loops and then you reset v, and if you remove all 

the self loops and just look at the length of the walk from s to v this walk was of even 

length and you landed in v. This is the probability of that event. 

Similarly, you can define P v superscript O for odd which is exactly the same event 

except that the length of the walk now odd. Clearly P v superscript E plus P v superscript 

O both are up to P v and we know the P v is at least 1 over 2 n. Now with this notion of 

lazy random walks and the notation that go along with it, we are now ready to look at the 

framework of our analysis. 
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So, how are we going to do this analysis? There is going to be a very, very key 

summation. This is the summation over all the vertices of the product P v e times P v o. 

Now think about this to understand what the summation is about, if the graph is a 

bipartite graph for each vertex v either P v of e is 0 or P v of o is 0 because starting at s 

each other vertex can only be reached by either a even length path or an odd length path. 

So, one of these probabilities is going to be 0 if the graph is bipartite. So the entire 



summation is going to be 0. 

However, this summation let us consider what happens when the graph is epsilon far 

from being bipartite. Now we need to show that this summation is actually is going to be 

large and by large we mean that it is greater than some epsilon over c prime n. And more 

over if it is large we need to be able to say then that this function odd-cycle will return a 

found verdict with some constant probability. So let me repeat that again, when the given 

graph is far from being bipartite then this summation starts to take a larger value it is 

certainly not 0 so it start to take a much larger value and in a particular we want to show 

that this summation take some value is greater than epsilon over c prime n and c prime is 

some constant. 

Given that the summation is so large we need to be able to show that the odd-cycle 

subroutine will return found verdict with some significant probability and this is the two 

steps of the analysis that we are going to follow. So without further you do let us start 

with step 1. 
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And recollect what is it that we want to show if the graph is epsilon far from being 

bipartite then this summation over all these words is P v e times P v o is at least epsilon 

over as c n, where c is some constant. But, well this is a standard proof technique we will 

show that if we start with the assumptions that the summation is actually small as in less 

than epsilon over c n and the graph is far from being bipartite we can work our way to 



the contradiction. If you think about this when this leads to a contradiction what we are 

proved is the negation of this statement that we have over here and the negation of the 

statement is the negation of this individual statement or this statement. And negation if 

you work it out it is exactly going to be logically equivalent to this implication. 

So, let us move on and just the things that you need to keep in mind is that we are 

assuming that the summation is small, there is less than epsilon over c n and the graph is 

epsilon far from being a bipartite, so keep that in mind. 
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So with that let us start with the analysis source. Of course, in the odd-cycle subroutine 

we first pick an s and you can think of it has a sort of an enforce step, because the 

moment you pick s you can then set into two partition of a vertex set into two parts V e 

and V o. This is not just done arbitrarily, but rather this is done in the following manner. 

So, this is set V e is the set of all vertices such that the probability P v e is greater than or 

equal to P v o. These are the vertices such that you are more likely to terminate at them 

up within even number of steps. 

Remember if it is a bipartite graph every step will take you from one part to the other 

part. So that makes a lot sense because now you are more likely and even steps to be on 

the left part and that is at least what we hope if this is the proper way to partition this 

graph, so this is V e. And anything other than V e replace in V o. These are going to be 

vertices there are more likely for the random walk to terminate having a walk length that 



is of odd length. Or let us now pick a vertex v. This is some vertex v for convenience we 

place it n v e, but later we can see that it could be even and V o. 

What do we know about v? Well, P v superscript e is at least 1 over 2 n. why? Well, 

without the e superscript that itself is going to be 1 over 2 n. And moreover we know that 

P v is equal to P v e plus P v o and we know that on the left side P v e dominates and so if 

you think about it P v e must be at least one fourth of 1 over n ok Now, consider the 

neighbourhood of v. Just to let you know where we are going, we are trying to find the 

product of P v e times P v o. Now well P v e we already have, but to get to P v o we are 

going to try and get an a bound P v o by looking at the neighbourhood of v and seeing 

what is the probability of reaching the neighbourhood even number of steps, because 

once you reach in neighbourhood within even number of steps then in one step in you 

will reach v and then that will be a way to reach v with a walk that is of odd length. And 

so that will give us P v o. So that is really where we are going. 

So let us go one step at a time. Let us pick a vertex u that is the neighbor of v and let us 

focus in particular on the neighbourhood v within the set v e here. These are the 

neighbors. So, v might have neighbor over here but we are not going to worry about that. 

And we know that for this under the same reasoning we know P u e is at least 1 over 4 n. 

And here something we need to prove. This is going to be left as an exercise, but it is 

nice (Refer Time: 23:02) exercise for you to you have to think about. 

What we need to show is the probability that a random walk starting at s will reach u 

within even number of a walk length that is of even parity. In L minus 1 random walk 

steps. Here we are adding little primary to this probability, here we are specifying that 

the number of random walk steps should be L minus 1. This probability we want to 

understand this. And our claim is that probability is not too be small it is at least 1 over 

32 n. So think about this. 

The hint that I would like to give is that basically we know this P u superscript is at least 

1 over 2 n. Now you will reach u having taken several self loops. So the probability of 

reaching having the same walk structure, but achieving and that in L minus 1 random 

walk steps is you can achieve that by just skipping one of the self loops. So, exploiting 

that we want to get a bound on this probability and we want to be able to say that that is 

at least 1 over 32 n. So, this is your exercise. 



And, for now let us proceed with this bound. Now notice that with this bound what that 

means is we have reached u with some probability 1 over 32 n and we have reached u 

with walk length that is of even length up to u, which means that with 1 over 2 d 

probability we will step into v and by doing so we would have reached v with the walk 

length that is odd. So that gives us therefore a bound for this probability P v o. So, P v o 

now we look at one particular u, but now we have to sum over all neighbors of all u they 

are the neighbors v, but in restricted to this v e. Summation of over all such u, this is the 

probability that we already have over here that we will reach u within even length walk 

in L minus 1 random walk steps. And then with probability 1 over 2 d we will transition 

in to v and summed over u we will get a bound for lower bound for P v o. 

And now remember we have a notation d e of v for the number of neighbors of v that are 

in this set v e. Therefore, this is simply d e of v times and now we are going to plug-in 

this inequality of 1 over 32 n over here this 2 here will make this as 64 so we get this 

bound over here. Notice now that we have a bound for P v e and we have bound for P v 

o. These are two components that we need to multiply and we are interested in P v e 

times P v o. So all we need to do is, well this is nothing but 1 over 4 n times this is that 

basically P v e times this bound over here d v e over 64 d n. Just to be clear this must not 

be an equal to but rather in inequality 

One last comment here, this exact same argument can be repeated for vertices see on the 

right side as well. So, the same expression except now we would not have d v e, but will 

have d o v because it is now if the vertex v was chosen on the right side then we will be 

interested in neighbors that are on the right side, so that will be d o of v. (Refer Time: 

28:06) that change this expression will remain exactly the same. We can actually put this 

expression back into the larger summation. 
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Remember we were interested in the summation over all the vertices P v e times P v o, 

and this summation is at least the sum of these individual summation. The first 

summation is simply based on what we have over here, and the second summation is 

what we would have if we considered the vertex v to be drawn from here. So that is 

essentially what we have over here, v drawn from v and v e and v and v o, but the 

expression inside the summation is pretty much identical except that we are using d o v 

here (Refer Time: 29:02) this number of neighbors of v and v o given that v is in v o. 

So, now pulling out the common terms we get 1 over some constant c prime d the n 

square outside and then we have the summation over vertices in v e, summation over 

vertices in v o, the neighbors of d v e and the neighbors of v d v and in the set v e and 

here in the set v o. What exactly is the summation? Well, this is as the turns out simply 

number of violating edges for the partition v e and v o. Why is that? Well, think about 

this is if that partition considers the partition v e and v o these are the neighbors within 

the same partition. So, these are the violating edges and this number of violating edges 

must be more than epsilon d n that is the assumption that we started off with. 

So, if we plug this is epsilon d n over here we will end up getting a bound of epsilon over 

c prime n. This d n will cancel out with this d n and one of these n’s so we will be left 

with this summation being at least epsilon over some c prime n. But keep in mind our 

assumption was that this joint summation is actually less than epsilon times c n. And this 



is our assumption that we started off with. Now if c prime here is small then this quantity 

is going to be larger compared to this epsilon c n and that would lead to a contradiction 

because on the one hand our assumption is that this summation is less than the smaller 

quantity. On the other hand what we are worked out is that the summation is greater than 

this larger quantity. So, this is the contradiction that we have an established. 

With this contradiction that the first step in our analysis is over and we need to move on 

to the second step. Just remind ourselves conclusions on first step is that, if the graph is 

epsilon far from being bipartite then this summation will be more than some epsilon c 

prime n. And given that it is large now our second steps to prove that the function odd-

cycle will actually return saying that an odd-cycle is found with the probability at least 

some constant. And vice constant that means we are say that it is bounded away from 0. 
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So now let us move into a step 2 of the analysis. Just to remind ourselves, we are given 

that the this submission overall v P v e times P v o is greater than or equal to epsilon over 

c n, and we need to show that the odd-cycle will find the bipartite and find with good 

probability find an odd-cycle therefore our safe return that is found 1. Now, let us define 

an indicator random variable. This is indicator random variable eta i j will be set to 1 if 

the ith and the jth random walk from s terminated at v. And one of them was of even 

walk client while the other was odd. 

So, clearly you can see why this indicated a random variable is very important, because 



if eta i j is 0 that means we have found a candidate vertex v which gives us a witness to 

the fact that there is an odd-cycle and therefore we will able to reject this graph. So, eta i 

j takes on the value 1 under that condition and otherwise it takes on the value 0. So, what 

is the probability that eta i j equal to 1 that is nothing but, well for eta i j to be 1 there 

must be some vertex v such that 1 of the probabilities let us pick a vertex v with the 

probability P v e the random walk will reach v having an walk length that is even, with P 

v o the it will with this probability it will reach vertex v with a walk length that is odd. 

Let us say ith random walk follow this probability and the jth random walk follow this 

probability what you end up having is an evidence of an odd-cycle. The other option is 

that the jth random walk follows this probability and ith random walk follows this 

probability. So that is why we have this two, because there is two ways which these can 

combine. And that is for one vertex v. And we have to therefore sum over all possible 

destination vertices v. And this summation is gives us the probability that eta i j equals 1. 

And this is nothing but the expectation on the value of eta i j s well. That is simply be 

follows from the fact that eta i j is an indicator random variable. 
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And now notice that at the end, let us count all the eta i j’s all the possible eta i j’s. If the 

summation over all eta i j’s where i is strict (Refer Time: 36:09) j. If this summation is 

equal to 0, what that means is none of the pairs of walks terminated at the same vertex 

with different parity lines. So we not been able to find any evidence that the graph is not 



bipartite, which means that we will fail to reject and number where of course this whole 

analysis is under the assumption that the graph is actually far being from bipartite so this 

would be the bad event. If this event were to occur then our algorithm is incorrect. And 

so we need to ensure the probability of this event is small. 

Let us consider the probability of the complementary event. The total number of walks 

member is some polynomial in 1 over epsilon times log n the whole times are squared of 

n. I mean the most important term to keep in mind is this square root of n over here. This 

square root of n random walks means that the total number of pairs is at least k squared, 

big omega of k square, which means that the number of pairs if you are considering that 

the k square root of n is big omega of n over epsilon. So there is also this also this (Refer 

Time: 37:47) epsilon over here. 

With that let us and consider the expectation of the sum of eta i j’s. That is of course by 

linearity of expectation nothing but the summation over all i less than j expectation of eta 

i j. Of course, the expectation of eta i j if you recall is this quantity 2 P v e times P v o 

summed over all vertices, and remember then this is now we are assuming that this is 

large. So at least sum epsilon over c n. With that assumption this expectation is going to 

be epsilon of the order of epsilon over c n, but then we are summing over all pairs and 

that is going to be big omega of n over epsilon. 

So, some of the term we n in the epsilon will cancel out and this expectation will be 

some theta of one term. So it is going to be greater than 1 assuming the constants are 

bipartitely chosen. But this does not give us enough strength, because notice that this 

only says expectation is greater than 1. What we want is to ensure that the probability 

with which it will actually be this e this summation eta i j will be more than 1 basically 

the event the complementary to this event is it should large. So, the part of the left as the 

exercise now is to show using Chebyshev’s inequality that probability of this event is 

actually is small. 

So, over which implies that the probability of the summation of eta i j is exceeding 1 is 

greater than or equal to 1 is sufficiently large. And remember that if that happens 

algorithm will in fact reject the graph. So, with that we really come to end of the second 

step in the analysis and therefore also the end of the overall analysis. If all of this 

workout then the summation eta i j’s will be greater than or equal to 1 with some good 



probability which means that we have detected a collation of (Refer Time: 40:37).  

So, that brings us to the end of our analysis of the property testing algorithm of a 

bipartite testing that used random walks. 


