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Let us look at matching’s. It is 1 more problem, we want to consider. In the graph 

streaming context, matching is a basically a matching M is basically a subset of the set of 

edges such that no 2 edges in the matching M share an endpoint. So, let us look at 1 such 

example. So, this is a matching, this edge and this edge and now if you look M in this 

case, M equal to 1 comma 2 and 3 comma 4. Now, if you think about it, why this is 

matching? Well, it is a subset of the edges and if you look at these 2 edges they do not 

share an endpoint. The first edge has end points 1 and 2 the second edge has end points 3 

and 4 and they do not share an end point, so matching. 

Let us look at another example, this is another matching, but if you were to try and add 1 

more edge then it is no longer a matching’s. So, this is not a matching and typically we 

are interested in either maximum cardinality of the matching. So, you would not 

matching that are of large cardinality or in the weighted setting maximum weight 

matching. So, for example, this is a matching, but this is a matching of just 1 with one 

edge and once you have included the edge, you cannot add any other edge. So, this is not 



a maximum cardinality matching. So, for this graph the real maximum cardinality 

matching would be the following. So, here you include, we have already saw this 1, 2 

and then 3 4, but let us look at an example of maximum weight matching. 

So, for example, let us say that this is 3, 4, 5 and 2 let us make that a little bit interesting 

let us make that 1. Now, what is the maximum weight? Matching here, if we include 3 

and 1 we only get a maximum weight of 4. If we include the edge 2, 3 then also we get a 

maximum weight of 4. So, really the maximum weight edge, the maximum weight 

matching it is just that 1 edge, 1 to 3 that will give us the maximum weight of 5. 
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So, let see how we can compute the maximum cardinality matching first. So, first we are 

going to focus on maximum cardinality matching. It is the unweighted setting and we 

have do this in the streaming model. So, as usual we start with the matching being the 

empty set and then we ask how do, we compute the maximum cardinality matching. 

Now, we look at edges one at a time and for each edge we first we check whether 

including the edge e into the current matching retains the fact retains the matching in the 

problem matching property. 

What is the matching property? No two edges in the matching should share an endpoint 

if that property is violated then you discard the set e the edge e. On the other hand, if that 

by including e you get a new matching then you simply add that edge to the matching. 

So, M you simply assign M to M union this edge e. So, it is a very simple greedy 



algorithm and this gives us a good matching, but it is not the true maximum cardinality 

matching. So, it is only an approximation and simple let us look at a simple graph where 

this algorithm will fail to create to give you the actual maximum cardinality matching. 
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So, let say that the graph is of this form, you first get the edge 2 comma 3 then you get 

the edge 1 comma 2 and then you get the edge 3 comma 4, let say you get the edges in 

the sequence then your M after the first iteration will be the edge 2 comma 3 and then 

anytime you when you try to add start the edge 1 comma 2 it will violate the matching 

condition because they share that vertex 2. So, this edge 1 comma 2 will not be added 

then when we get the edge 3 comma 4. Again, we will discard that edges well because 

again and it is a shared vertex and so, the algorithm will output a matching with just 1 

edge, but simply looking at this graph it is easy to see that the maximum cardinality 

matching is actually these 2 edges 1 comma 2 and 3 comma 4. 

So, you get 2 edges in the matching. This is which means that we only could get half the 

number of edges and as it turns out this algorithm is guarantee to give you that sort of an 

approximation it is 2 approximation, which means that the number of edges output by 

this algorithm is going to be at least half the number of matching’s in an optimal 

maximum cardinality matching. 
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So, if the optimal maximum cardinality matching is say 100, then we guarantee to get 

some number of matching’s that is sandwiched within this region between 50, 100. 
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So, in this example the maximum cardinality matching was 2 and we got our algorithm is 

guarantee to output some number of matching’s with just between 1 and 2 and particular 

we got 1. So, this is the maximum cardinality matching and now let us move want to 

weighted case. 
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So, here now we are looking at weighted graph and we are not looking at the cardinality, 

but we are looking at the maximum weight matching may be we want a maximum 

weight matching and the algorithm is little interesting here. You start with as usual the 

empty matching and we look at edges one at a time and for each edge, we look at we 

collect the set of edges in the current matching. So, this M is the current matching that 

we collect the set of edges that have a common endpoint with the current edge e is the 

current edge in ours stream and we asked with, if there are edges in the current matching 

that have a common end point. 

With the most reason, I mean the current edge in this stream and we collect all those 

edges and note the question is what the cardinality of this set C is? it is must be at most 2 

because the current edge, let say is e and let say it is between this is edge e between u 

and v, M is going to be a matching is a variant that this algorithm going to main thing 

and. So, at best these 2 in the set c could have 1 edge incident at u and another edge 

incident at v. 

So, the set C could have cardinality of at most 2 and you look at that set C and the weight 

the w of C is basically the sum of the weights of those edges. So, let say this is 2 and this 

is 3, then w of C will be 5. We ask a whether the new edge e if the current edge e is from 

the stream is good enough for us to include in the matching because if we were to 

include e then we would have to throw away these 2 edges. So, before we include e, we 



want to make sure that it is it is worthy of being included, because that only mean that 

the other 2 edges have to be thrown out right. So, to do that what we are doing is well 

your intuition might say that you just simply do that if this condition holds, if w of e is 

greater than the w of the edges in set C then e is good enough, but has it returns that has 

a small problem we will look at that. 

So, instead what we are going to do is we are going to not just look for this condition. We 

will in fact, expect a little more out of this edge e w of e is must be greater than w of C 

times 1 plus some parameter gamma and this is this is basically rewritten in this form 

over here. So, if this edge e is good enough in this according to this, in other words, if it 

is if obeys this inequality then what we do is we throw away C. So, we remove C from 

the matching and we include e into the matching only if it is good enough and we do this 

for every edge in the stream and we finally, returned the matching M and other. So, little 

bit of analysis if you with that analysis you can show and then with for the right choice 

of the parameter gamma you can show that you are this algorithm actually be 5.828 

approximations. 

Now, let us actually look at let revisit this condition. Why did we even have to add this? 

1 plus gamma is why not just include an edge, whenever it is better than the current 

competing set of edges the set C, just think about it a little bit. 
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Let us play with an example in, if you look at this example you just have your input 



graph g is a weighted graph that has n vertices and the edges go from 1 to 2, 2 to 3, 3 to 4 

and so on and the weights are 1 plus epsilon. Now, 1 plus epsilon 1 plus 2 epsilon and so 

on, you know. So, in general if you have a vertex i and i plus 1 the edge between them 

has weight 1 plus i epsilon. 

Now, let us suppose we use this condition w of e is if it is greater than w of C, then let 

say that is all we have so and let say this we get the edges in this sequence first, we get 

this edge, we get this second and so on. So, what will happen is the following we will 

first include this edge. So, in the matching and then when edge 2 comma 3 comes we 

will throw way with this edge and we will then include this edge and then we will throw 

way this edge and we will include the next edge and so on and so forth. At the end we 

would have thrown away all the edges except the very last edge. 

So, under this condition we will get a matching of weight 1 plus n minus 1 epsilon as the 

as a maximum weight, but let us actually look at this a little bit more carefully see is the 

Best thing the highest cardinality, I mean none of the cardinality, the maximum weight 

matching is can actually be a lot higher. It can include this edge the previous edge will 

not be included, but it was basically every alternate edge can be included and let say this 

edge was included in this 1 was not included and say this 1 was not included, but this 1 

could have been included and so on, every alternate edge could have been included. 

So, the actual maximum weight maximum weight matching is going to be much higher 

than what the algorithm actually will output. So, that is the output under this condition 

that is why we need this gamma. 



(Refer Slide Time: 16:05) 

 

That is we wanted to discuss about matching where we have 1 last notion that we want to 

compute using in the streaming model, and we will this is basically a random walks and 

of course, we have studied random walks quite a bit in this course and you may 

remember recall that the random walks are actually useful to compute something called 

the page rank, which measures the importance of vertices in a graph and typically this is 

what search engines use to measure the importance of web pages in the internet. 

So, random walks in that sense tend to be very, very important and fundamental to the 

business of a search engines and in fact, it was an algorithm that was invented by the 

founders of Google and which one of the key concepts that made their business. So, it is 

a very important notion of random, the notion in the random walks notion and the 

question. Now, if you have the entire graph it is easy to compute a random walk, but if 

all you get is the graph in this sort of a stream you get 1 edge at a time in some arbitrary 

order then thinks big I mean little bit tricky. So, how do you compute the random walk? 

And this is actually an example where your algorithm in for anything useful to be 

completed one pass is not enough will have to actually do multiple passes. 

So, 1 pass is simply 1 for loop over all the edges in the graph, but can you to solve a 

problem like the random walks problem 1 pass is not enough you need multiple passes 

and, what is the random walk? Well, you started some vertex say v 0 considering all of it 

is neighbors, you choose 1 neighbor uniformly at random you have got v 1 from v 1 have 



a bunch of neighbors, you got v 2, v 3 and then let say back to v 1, but just to just to sort 

of a note that this was the vertex visited forth. We are going to this sort of our random 

purposes label this vertex again as v 4 then we got v 5, v 6 and then come back to this 

vertex. Now, what we call v 7 then v 8, v 9, v 10 and come back, we call v 11 and v 12. 

So, this is an example of a random walk and let us set up some basic notations. 
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Suppose, we start a random walk at a node u the distribution. Now, let us say we allow 

that random walk, to make this walk and we will allow it to do T steps after doing T steps 

it is these random walks is in some location and you can think about it. It is actually the 

location a, is a random variable, let us it can be 1 of many nodes. So, in this example that 

we saw after 12 steps, we reached 12; v 12, but if you have to run this random walk 

again maybe it reached type you could have reach this vertex. So, maybe it would have 

reached this vertex. So, this vertex or it would come back to 0 itself, there are varieties of 

possibilities and for each of these possibilities there is a probability associated with after 

12 steps. What is the problem you can ask what is the probability that it will be the 

random walk will be at this vertex after 12 steps? 

What is the probability of the random reaching this vertex after twelve steps? That is 

some another probability right and that is basically probability distribution and that we 

denote by mu T of u it is the distribution of the random walk after T steps and now, 

essentially when you run a random walk for T steps you are basically sampling from this 



distribution and so. Now, let us look at how we can find mu T of u this actually quite 

easy when you have T passes correct in the first pass u. Basically, let say you start at u in 

the first pass you look at all the neighbors of u and then after seeing all the neighbors you 

pick 1 of the neighbors uniformly at random. 

So, the end of the first pass you get the first random walks step seems a, it is bit wasteful, 

but still after T passes after 1 pass you can get you can make 1 step in the random walk. 
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Let say u is nothing, but the 0th element from v, v 0 let say after the first pass, we have 

gone to v 1. Now, in the second pass you look at all the neighbors of v 1 and simply 

choose 1 of them uniformly at random, you will get to the second location in the random 

walk sequence v 2 and so on. So, you can do that for t's T steps and you will get mu T of 

u. So, this is pretty trivial, but that is pretty wasteful and we want to do it better and in 

particular what we can see is we can actually sample from mu T of u using now T passes, 

but rather just square root of T passes and the idea is to try and perform square root of T 

random walks in parallel and somehow stitched them together. 
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So, let us actually look at the algorithm. So, for simplicity we just focus on the concept 

rather than the details, what we are going to do is just look at a simplified version of the 

algorithm it is not going to be complete, but we are going to just try and understand the 

concept behind this. So, what we are going to do let T. So, what we have going to do is 

just run this algorithm for T rounds T passes square root of T passes rather, square root of 

T passes so, but what we are going to do is for every vertex v we are going to compute T 

v, what is T v? T v is a node sample from mu square root of T of v. 

So, if you start at v and you run the random walk for square root of let say square root of 

T steps then you will get you basically sample something from mu T of mu of mu 

subscripts square root of T of v, but we will do we will do this importantly we will have 

do this for every vertex v. So, remember we have at our disposal sum O of n space. So, 

we just constant space we can do one random walk starting at 1 of the vertices, but since 

we have O of n space, we can actually do n parallel random walks and for each 1 of them 

we do it square for square root T passes. So, we will get for each 1 of them you will get a 

square of T length random walk. 

Now, the important thing is to somehow stitch these squares, these random walks to 

create random walk of length T. 
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Essentially what happens is the following. So, from 1 of the vertices say let say this is the 

u vertex u and let say this is and this is u. So, let say this is the set of all vertices from u, 

you get T of u this is basically square root of T length random walk starting from u. 

Similarly, we would have done this for all the edges. So, from T u is basically again 1 of 

the vertices in the in the graph. 

So, let say that is nothing, but say v 1 the thing is this. We also have computed T of v 

one. So, what we can do is we can take this random walk and stitch it with this random 

walk, we will get a random walk of length 2 times square root of T starting from u and 

we can continue this. Now, T v 1 may maybe that is nothing, but this vertex v 2. So, then 

we can take this and stitch it with the rest and then you will get random walk of length 3 

times square root of T. Now, if you take square root of T such if you continue to do that 

you will get square root of T such random walks each of length T a square root of T 

stitched together. You will get T length random walk and so just by stitching these short 

walks we will be able to perform. 

You will be able to compute, we will basically be able to sample from mu T starting from 

u this is a T length random walk. So, this requires I mean now the issue this, if in doing, 

if we end up. So, let say this ends up in a location and happens to be again v 1, we are in 

trouble because we have already used the random walk starting from v 1. So, that is a 

little bit of a problem, that is why in this algorithm what we are doing is we are actually 



this line represents the stitching that happened, but as we are trying to stitch we should 

be going to distinct vertices and collecting a short walks from there. 

If that is somehow not distinct, we will be running into some trouble because we cannot 

reuse the same short walk twice. So, that will be an issue which there is a little bit more 

work that can be done to avoid that issue essentially by avoiding all of this, you will I 

mean by overcoming those challenges what we can say is that this problem can be solved 

with the space of O of n plus T requiring at most O of square root of T passes with high 

probability and then you can use these random walks to then compute the page rank. 

So, just to conclude, today we have a look at graphs streaming algorithms. We have 

looked at a variety of algorithms starting from very basic things like testing for 

connectivity, minimum spanning tree and then we looked at some way some non trivial 

concepts in graph algorithms like graph sparsification, random walks and things of that 

nature and we have seen how even the sort of restricted model of streaming were able to 

compute these concepts reasonably well. So, with that we will conclude our lecture on 

graph streaming. 

Thank you. 


