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Graph Streaming Algorithms: Graph Sparsification 

 

Let us now look at slightly more advanced topic Graph Sparsification. This is in spirit 

similar to the notions like graph spanners. We want sub graph with far few a number of 

edges, but retaining some of the properties of the original graph and if not retaining the 

properties in exact value at least in an approximate sense. 
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There are varieties of such sparsifications and the motivations of course, are quite 

obvious you have a very dense graph and you can take a lot of space, but you can 

sparisify the graph and still retain some of the properties. You can work with the 

sparsified graph which as a lot smaller foot print memory footprint and you will be able 

to scale you will be solve problems that you could not solve if the graph full of course, 

the price you will have to pay is some amount of approximation, but in most cases 

especially in big data applications we can leave it such approximations. 

Now, let us look specifically at 1 form of sparsification called a cut sparsification and 

here we want to have a sparse graph that retains the cut properties of the original graph 

and let me also point out that we are talking about a weighted graphs and so, let say your 



original graph is to graph G, we say that the weighted sub graph H is a 1 plus epsilon cut 

sparsification of the original graph G if the following condition holds for all cuts. So, 

when you isolate a vertex that with as A subset of V what we are really talking about is a 

cut in the graph for the following reasons. 

Suppose, you have a vertex set V this is the entire vertex set V when you isolate a set A 

what you are talking about implicitly is the cut the edge is going from a to outside A and 

that is the cut we talking about and for every possible cut and this this would mean that 

there are 2 raise to the cardinality of V number of cuts and the this property should holds 

for every such possible cut the lambda a of H is the weight of the cut between A and V 

minus a in A. 

So, remember now we are actually talking about 2 graphs, G the original graph, G and 

the sub graph H. So, when you specify a cut in either 1 of these graphs there is an 

induced weight of the cut. 
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Let us look at that, now let us actually look at a specific example. So, let say we have a 

graph G let us say that the edge is drawn in blue are the graph G and let us highlight a 

few edges and will call them let say this is the graph and the highlighted edge is form the 

graph h. So, let us give some numbers. Let us say these are the edges the weights of the 

edges in the graph G the weight of the edges in H need not be the same weight as the 

original graph G. 



Let us actually make provide numbers for that. So, let say the yellow edges have weights 

now let us consider cut and let us consider this cut. So, all the vertices on this side is a, 

and the vertices on this side are b minus a. Now, in this case let us look at. So, let see 

what lambda a of H and lambda a of g. These are the 2 weights of the cuts that we care 

about lambda a of H is the sum of the weights of the cut in the in graph h. So, that is 

going to be. So, in this cut that is going to be 7 and 8 that is equal to 15. 

But if you look at graph G then the weight of the cut is going to be 5 plus 10, 15 plus 20 

that is 35 plus 3 plus 38 plus 5 which is 43. So, you see that the 2 graphs have different 

weight of the weight for the same cut, but if we were to say that H is a sparsification cut 

sparsification in particular 1 plus epsilon cut sparsification then for any cut that we take 

the weight of the cut in H must be within 1 plus or minus epsilon of the weight of the cut 

in G and. So, what is that thus the weight of the cut in the sparsified graph should be 

should be in approximation of the weight of the cut in in the original graph G and this 

must be as i mentioned earlier true for all possible cuts. So, this is what we mean by 

graph sparsification. 
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Let us look at technique to perform graph sparsification and in the streaming model now 

we are going to are mostly going to just talk about the idea here the details can be found 

in the in the survey paper on graph streaming which will be posted as well. So, let us 

focus in the idea here. Let say you have a way to obtain an alpha sparsification for 1 



graph, say G 1 and now let say you also have a way to find an alpha sparsification for 

another graph G 2 and let say the 2 sparsifications are called H 1 and H 2. 

Now, what you can see is that when you take the union of G 1 G 2. So, you look at the 

graph G 1 union G 2 you can get an alpha sparsification just by taking the union of H 1 

and H 2. So, this is basically the point if you when you merge to alpha sparsifications 

you what you get is an alpha sparsification of the merged original graph. So, this is 1 

nice property that we have which means that if we can somehow construct the alpha 

sparsification for G 1 and this somehow construct the alpha sparsification of G 2 and if 

we have H 1, H 2 then we can simply take the union of them and we will an alpha 

sparsification for G 1 union G 2. 

This is 1 interesting property that we are going to take advantage of this second 

interesting property that we are going to take advantage of is composing multiple 

sparsifications. Let say you start with the graph G 1 and you construct an alpha 

sparsification of G 1 which let say in that and call that H 2 and then let say you further 

sparsify H 2 to get H 3 and this sparsification is a beta sparsification of H 2. So, you take 

H 2 you sparsified further using and you get beta sparsification of H 2 let say you that is 

becomes that call that H 3, now what we can say is that H 3 which is a beta sparsification 

of the H 2 and is actually in alpha beta sparsification of G 1. So, we lost as little bit of 

approximation here. 

In this transformation from G 1 to H 2 that is alpha sparsification then we lost another 

beta factor when we got to H 3, H 3 as being an alpha beta sparsification of G 1. So, this 

illustrates how we can compose a sequence of sparsifications to get the original graph. 

So, these are 2 basic properties of sparsifications that we are going to take advantage of 

and now let us look at how we can do streaming. 
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But here in the interest of focusing of the streaming part rather actually constructing 

sparsifications we are going to make an assumption we are going to make an assumption 

this is an assumption based on the factor there are other works you know other papers 

talking about how such sparsifies a chemical structure. 

We are going to assume that there exists 1 plus gamma sparsifier algorithm a that will 

produce a sparsification of size gamma which is equal to O of epsilon to the negative 2 

times n. So, that just to be clear we are talking about. So, size of the gamma sparsifier is 

equal to O of n over epsilon square on a graph of n nodes. So, this is we are going to 

assume that such a sparsifier exist. So, you have a way to perform sparsification, but the 

problem is you cannot simply apply this because you can only apply this in the streaming 

we were limited to the streaming mode this is the claim this is in this assumes that the 

entire graph is available for this algorithm a. So, this is a centralised algorithm 

centralised classical algorithm will say. 

So, now what we need to do is a take advantage of these 2 properties these merge 

property and the composability property and I should construct an algorithm for the 

stream. So, here is the idea what we do is stream. So, this G 1 this very first 1 block it 

basically represents stream and you are getting a sequence of edges and as you are 

getting an let say this G 1 and each 1 of these for simplicity let say is 50 edges after the 



first 50 edges you are able to store the 50 edges in your local memory what you do is you 

apply the algorithm a on those 50 edges.  

So, those 50 edges will be some part of the graph and you apply and you will you will 

get basically you will get sparsification and let us denote that as H 1 0 and then. So, now, 

you have H 1 0 then you start getting the edges in G 2 superscript 0 and when you 

collected all the edges in G 2 superscript 0 you again run the algorithm a and you will get 

sparsified version which is H which we denote this data as H 2 0. 

Now, when you have these 2 sub graphs this sparsified graph H 1 0 and H 2 0, we know 

that these 2 can be merged and we will merge and we will get H 1 0 union H 2 0. So, this 

will be a sparsification of G 1 1 based on what we have already seen here the merge 

property that we have seen before. 
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And then what we will do is we will be, looking at edges in G 3. So, then we will 

sparsify G 3, we will get H 3 0 then you will get 4 0 you will merge and you will get the 

merged sparsification of G 2 1 and that is going to be H 3 0 union H 4 0 and basically 

these we can call them as H 1 1 and this can be called as H 2 1 and now once we have H 

1 1 and H 2 1 we can then again merge those 2 we will get H 1 2 which is nothing, but H 

1 1 union H 2 1. 



So, we are just repeatedly merging things and remember this H itself will be a sparsified 

sub graph sub graph. So, that will be able to fit into your memory the whole graph may 

not be fitted, but the sparsified sub graph the sparsifications will be able to fit in. So, and 

then we will continue. So, now, we have basically we have the sparse graph remember 

this G 1 1 in creates something that I forgot to mention basically G 1 1 is the G 1 1 is 

nothing, but the union of G 1 0 and G 2 0 and that is why we are able to take the union of 

those sparsifications and get the sparsification of the larger graph. So, your stream is 

always in this level, but for analysis purposes you can you can think of it as constructing 

the sparsification for larger and larger graphs. 

So, similarly we will consider, at this point in time when the stream has reached this 

point we have basically constructed the sparsification for all of these edges which is 

represented by this G 1 2. So, here the sparsification continue and when we when we 

reach this point we would have computed this sparsification for all of these edges as well 

which is represented by G 2 2 and then we can put those 2 together and essentially find 

sparsification for the entire set which is represented by G 1 3. So, this is nice hierarchical 

way in which we can perform this sparsification. 
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And if we work out the details essentially what we get in this approach is that we will be 

able to get a 1 plus epsilon sparsification, where epsilon is some small positive constant 

and that sparsification will have size at most. If we write that out 1 over epsilon square O 



of 1 over epsilon square n log cubed n and the details are available in the survey, but for 

our purposes it will be good to understand at this conceptual level. 


