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Lecture – 05 

Analysis of Karger's Mincut Algorithm 

 

In this last segment, in today's lecture we will Analyze the Mincut Algorithm proposed 

by Karger. 
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And just to recollect, this is the lemma that we are going to prove with probability at 

least 1 over n choose 2, this sets S and V minus S. These are the sets that come out as an 

outcome of Karger's algorithm. This partition induces the smallest cut, this is the claim 

that we want to prove. And to prove that we will focus on one of the minimum 

cardinality cut sets. There could be many minimum cardinality cut sets. What we are 

going to do is pick one of them. So, C star I call it and we will prove something slightly 

stronger than it is required. We will prove that the probability of the cut produced by the 

algorithm, this S and V minus S is actually corresponding to the cut set C star. That 

probability is itself greater than 1 over n choose 2. 



Now if there are other cut sets, naturally the probability with which the algorithm will 

fines a one such minimum cut set is only going to be increased, so therefore being 

conservative in our claim here. Now, let us proceed with proving this claim and towards 

that less look at the execution of Karger’s mincut algorithm.  

In each step one of the edges was picked and contracted. Let us call these edges e 1, e 2, 

and so on up to e n minus 2. Of course, we only would contract n minus 2 edges, because 

of that time we may left with these two vertices and therefore we would stop. 

What is the probability that the algorithm succeeds? Well, if all of these edges that were 

picked for contraction missed C star then what we will be left with at the end is going to 

be C star. Another way of stating this is, as the algorithm progresses if we pick an edge 

and it happens to be an edge in this cut sets C star then the algorithm is going to fail. 

However, if all the edges that we pick as the algorithm progresses are outside of the cut 

set C star then at after the n minus 2 edge contractions takes place what we will be left 

with is exactly the edge set C star. 

Of course, if that were not the case meaning if e 1 through e n minus 2 were not part of C 

star, but then of you were left with something other than C star then c star cannot be the 

minimum cut. This is going to be the criteria for success of our algorithm. So, none of 

the edges that we picked are in the set in the cut set C star. 
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Let us say the cardinality of C star is some k. Clearly, the minimum degree of G must be 

at least k. Why? Because if the minimum degree was something less than k then you 

have a smaller cut, for example, if k is 5 but if one of the edges has the degree just 3 well 

that is the contradiction because you have a cut just size 3. So, minimum degree of G 

must be at least k. And this continues to holds that an invariant for all intermediate multi 

graphs that are produced because at any point in time if the degree goes below k, then we 

have a cut set that is corresponding to the original graph, that cut set that can be obtained 

in this manner. 

The vertex with super note with degree less than k can be put on one side and all other 

vertices on the other side and the cut set that induces will be of cardinality less than k 

and that will contradict assumption that we have that k is equal to the cardinality of 

minimum cut set. 
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One more notation - let G j denote the graph after j constructions. And here you notice 

that G j has n minus j vertices, while G 0 will have all the n vertices, G 1 will have after 

one contraction will have just n minus 1 vertex and so on. The number of edges you have 

to recall two things; G j has n minus j vertices and it is of degree at least k, minimum 

degree at least k. The total number of edges therefore must be at least n minus j times k 

divided by 2. Now the degree has to be shared so each edge contributes two to the 

degrees. If you look at the total degree, the total degrees n minus j times k so the number 

of edges will have to be at least n minus j times k divided by 2. What is that mean? Now 

we can start, and this is true for all G j. 

So, with that now we have the mathematics needed to continue with the proof. And what 

we want to do is bound this probability that the cut produce by the algorithm is in fact to 

the specific cut C star. So, what is that? That is this event the probability that the first 

edge, in fact this is nothing but the probability that none of the edges that we were 

chosen by the algorithm intersected with C star. Let us write the outcome carefully. That 

is the probability that e 1 does not belong to C star times now you are going from j equal 

to 1 to n minus 3, so probability that e 2 does not belong to C star, probability that e 2 

does not belong to C star and so on up to probability that e n minus 2 does not belong to 

C star. 



But each one of the subsequent probabilities notice required that the previous edges also 

do not belong to C star, because if any of the previous elements edges belong to C star 

then the algorithm is already not going to need us to C star. 
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 So, just working through that product we get this. What we have here is the probabilities 

that each of the e j plus once do not belong to C star. Now, what is the probability of 

actually picking an element from C star? Well, that probability is going to be at least k, 

because k divided by the total number of edges. K is the cardinality of C star. So that the 

bad event would be that we pick an element in C star, so this is the probability of the bad 

event which would be that we pick an element from an edge from C star so there are k 

edges in C star. This is for particular G j the total number of edges we have already seen 

is this quantity. This is the probability of the bad event. 

Now we are considering the good event and therefore one minus of that. So, what is the 

good event? Good event is that the edge that we picked is not actually an element of c 

star. And this is the good event for one particular G j. Such a good event has to be 

occurring for every j and therefore we take a product overall j values and this is 

expression we get. 



Now, solving this expression each one of these (Refer Time: 11:38) is going to be of the 

form n minus 2 by n, n minus 3 by n times and so on up to 2 by 3 times 1 by 3 and. Of 

course, this going to be a lot of cancellations will be left with all these terms up to 2 will 

get canceled, and all these terms up to 3 will get cancels, there will be an n minus 2 over 

here starting from that you will have cancellations. So we are left with 2 over n times n 

minus 1 which is nothing, but 1 over n choose 2 as we required. So this completes the 

proof of our lemma. 
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What we are left with is that we need to boost the probability of success. 1 over n 

chooses 2 is too smaller probability of success, but it is not very difficult to boost this 

probability we simply have to repeat the algorithm. Say some, C log n time n choose 2 

number of times this quantity, we have to repeated that many times. Now the probability 

that all of these reputation will failed is going to be 1 minus 1 over n choose 2, the whole 

raise to C times n choose 2 times log base e of n. 

So, here I am using log base e. And this ends up being at most one over n to the C, which 

is what we need for high probability. This gives us a guarantee with very high probability 

that the algorithm will indeed find in particular of the cut set C star. 
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We are finally left with Running Time Analysis. This particular algorithm is a Monte 

Carlo algorithm. So the running time is actually deterministic quantity. Of course, the 

algorithm may fail to produce the correct mincut with the very small probability. A quick 

exercise here, you have to show that each run of the Karger's algorithm takes O of n 

square time. You little bit careful about this, but are not hard at all. And if each execution 

takes out of n square time and we are going to repeat this something like C n choose 2 

time log n time. Therefore, the total running time ends up being O of n to the four times 

log n. 

So, this is the running time. There are some techniques to improve the running time, but 

for our process it is still a good polynomial running time, and moreover the algorithm is 

very elegant and simple and easy to implement. 

Thank you very much. 


