
Information Security
Shri Vasan V S,

Principal Consultant
Department of Computer Science and Engineering

Indian Institute of Technology, Madras
Module 18

Linux I/O Redirections and Pipes

Ok so in this module we will take a look at how the input and output can be redirected as well

as take a look at pipes. So when any command is run we always see the output of command

given in your window. So if you are basically running in terminal window have you always

see the output of the commands coming out in the same window in which you have already

run the command.

(Refer Slide Time: 00:37)

Now if you have a requirement at this terminal output which is referred technically as a

standard output needs to be sort of redirected to another location that is when we typically

call them as a redirection, right? In the Linux world we actually use this particular a symbol

the greater than symbol to redirect the contents or redirect the command output to another file

and whenever we want the contents of the file not to be getting lost but the output to be

appended to the end of the file we actually make use of the double greater than symbol.

(Refer Slide Time: 01:22)

So we will see those with an example here to get a better idea, now if I say that I want to run

the output of this command its basically going to be displayed on my standard output that is

basically as you were discussing its a same window on which I am running the command as

well. Now if I want to redirect the output of the command not to put it on to my standard

output but to place it in another file then I could actually give the location of the file in which

I would like to have the output redirected now if I say in this manner that I want a file read

me to be created under slash tmp and I want to have the output of this particular command in

this particular file name I just specify it like this, right?

Now if you see the contents of this file you will find that it had got created with whatever was

the output of this particular command. So output of this command was this because of this

redirection it had actually got created here. Now if I try to do something else now if I say LS

greater than same file name right so whatever was a file in the given earlier we are giving the

same filename here what is actually going to happen right now was the original content of the

file will be lost.

(Refer Slide Time: 02:57)

Now if you see the contents of this particular file you will find that the previous contents had

got lost, right? So whatever were the contents that I had here they are no more available

because of the fact that we had used this particular redirection operation. Now on the other

hand if I have used this up ending redirection operation you will find that the old contents of

the file retained and the contents of the output of this particular command is sort of getting

appended at the end of the file name.

Now this the output has run and as we have been seeing first example the contents would

actually gone into this file and now if I see this particular file you have the content available

at the end without the original content that was their getting lost, right?

(Refer Slide Time: 04:03)

So that is how the simple greater than and simple double great than actually works in

redirecting the output to a different file.

(Refer Slide Time: 04:12)

Now look at this very common examples. so we are basically saying that I want to list the

contents of tilde saddam so in the previous case module we are actually seen this to be

referring to the home directory of this user called Saddam and then slash star. So slash star

again the regular expression standing for 0 or more. So used in this context we will represent

all the files that is actually available in the home directory of this particular user Saddam

redirected to a file, what file? Which location is that? It is basically the home directory of this

user called gwb under that home directory it will be that filename called this particular name.

So the contents the file umm the directory contents of tilde Saddam will be getting redirected

and stored in a file in the location of this particular gwb is how directory in a file name called

weapons_mass_destruction.txt, right?

So the next usage as I was just showing you right now thus trying to cat this file display the

contents of this file and then redirected to another file with this name. So essentially if you

closely observe right? The first command the cat that we are seeing here is actually

equivalent to the cp command that we saw in the previous module because what is actually

happening in this particular command is that I am trying to display the contents of the file but

instead of displaying it onto my terminal and directing my shell to redirect the output to this

file name. So essentially another way of putting the same getting the same functionality is

that I can say cp of this particular file name to this particular file name right?

 And as we are seeing in the example that we had demonstrated right now the contents of this

particular file will be getting completely lost and over written whenever we use the simple

redirection whereas when we use this appending redirection the contents will be stored

whatever is available will be continuing to be available but the output of this command will

be sort of appended to the existing content instead of completely overwriting that, right?

Now I could also have something like this echo is a command in my shell just which just tries

to echo whatever is given as an argument to it, right? So if I say echo readme no such file or

directory and then redirected to the another file name. It will basically take whatever has been

asked to echo here into this particular file name, right?

(Refer Slide Time: 07:28)

Now we will see there is an example for you to understand it more clearly. So if I say echo

readme no such file or directory redirected to readme and if I say cat readme now it will

display that readme no such file or directory. Now the slight confusion that will be arising in

this particular example is that you don't know whether the system is giving you an error

message saying that this particular file read me is not available or there is a file called Read

ime and the contents of that readme is basically is this.

(Refer Slide Time: 08:13)

So in that way depending on what you are trying to do you will basically be getting the

appropriate output redirected into the filename that is actually specified after the redirection

symbol It is greater than symbol or the double greater than symbol.

(Refer Slide Time: 08:32)

Now similarly like I redirect my standard output there is something called as a standard input.

standard input device through which the input is expected to be fed into my application on

command and I'm trying to execute almost all the commands that we will come across in our

normal day to day usage you will find that the standard input is basically by my keyboard

from which I basically give the text that I want to be supplying to by command for it to work

on in and give me the standard output now sort as a command that we saw in one of the

previous modules. Basically price to sort the given data in a file if I don't specify the file soty

tries to take the input from standard input right? So if I say sort and then tell Windows and

LINUX as the two words that I want a give and then finally at Press control D.

Now how I press control D I hold the control key on my keyboard at the same time with

another finger I press the letter D and that is what we typically mean by saying I press control

D here; control D in UNIX is always the default end of file character so with this control D

pressing I am signifying to, I am signalling to my sort command that I have given whatever

input I want to give to you to work on and asking it to sort the given input after which it will

display the given contents in a sorted order right?

So this is one example of a command where it except Standard Input the standard input by

default is my keyboard but I could also redirect the standard input with this lesser than

symbol that is used right? So if I have the content that I want to sort in a file and if I use is

lesser than symbol here what is essentially meaning is that I will be able to take the contents

of this particular file and sort the contents which is available in the file as an input into the

sort command and the sorted contents will now be displayed on the Standard output.

Now if I want to give the standard output umm the sorted content that is coming standard

output to another by I can subsequently to a standard output redirection here in the same

command line with the great than symbol and then give a different file name right?

Now what will again happen is that the contents will be read from this file and because the

standard input redirection is used the contents of this file will be given as an input to the sort

instead of from the keyboard and because if I use the standard output here subsequently after

that whatever is the sorted contents of this particular file will now be getting redirected into

whatever filename we give after the standard output redirection. So in that way I will be able

to make use in a single command line to make use of both input and output redirection which

Linux very conveniently for us supports.

(Refer Slide Time: 11:56)

Now coming into the pipes so we did actually see the definition of a pipe in one of our earlier

modules so Unix pipes are very useful to redirect the standard output of a command as a

standard input of another command. So we actually make use of this symbol for specifying

the pipe Command.

So what has actually happening in this particular cases we are saying that star dot log as we

know this will basically display the contents of all filenames which are ending with dot log,

but because the fact the pipe is used and when use a pipe output has to be fit into the pipe the

default standard output will not be getting the contents in this particular case but that output

would be going into the pipe and this output will now become the input for this command.

So grep minus i error so this command will basically as we have seen before in earlier

module the grep command with the minus i option will search for the pattern error in a case

insensitive manner and all the lines at as this pattern error will now be getting pipe into the

third command into the command line which is the sort Command.

So it will sort all the lines that has the pattern error in a case insensitive manner in all the files

that is actually ending with dot log. So if you look at this with a single command line by

using the pipe symbol we have been able to actually run a very powerful utility that is

required for us wherein we wanted to get a sorted list of all lines which has the pattern error

in a case insensitive Manner in all the files it is actually ending with dot log. So that is

basically the power of the pipes in Unix.

(Refer Slide Time: 13:57)

So look at the next example So we are saying grep minus ri error in dot. So in the current

directory dot as we know stands for the current directory. So in the current directory

recursively and the case insensitive manner search for the pattern error and all those lines in

which you find the pattern error pipe it to grep minus v ignore. So minus v we also saw that is

basically standing for the reverse behaviour of the grep wherein I will have the pattern that is

given should not be present in the lines that I'm basically selecting for displaying here. So

what this essentially will give is it will display all the lines which does not have the pattern

called ignored.

And then that will be pipe into the sort minus u option wherein it will give me all the unique

lines in that particular output and the entire thing will now be redirected into a file called

serious underscore errors dot log. Now this particular character the backslash in UNIX is

what is called as a escape character. So the escape characters usually given whenever we do

not want the shell to interpret the next character that you are going to give in a default special

Manner, right?

Now why we use escape characters in this particular sequence is that we actually have a very

long command line that you are giving because of so many pipe symbol that we are using

because of which sort a grep around into the next line. Now if you use the escape character

and then press the enter key, the enter key will not be interpreted by the shell as the end of my

command line but will be interpreted as a normal literal new line character because of which

will now give me your commands continuation character at the next line in which I'm saying

that I am going to be displaying redirecting output into this particular file.

So essentially what is this command going to do it is now going to have all lines which is

actually having the pattern error in a case insensitive manner in all the files that is currently

available in my current working directory but those lines will be having the pattern called

ignored and all those lines will be sorted and only unique lines in the sorted lines among the

sorted lines will be getting redirected into this particular file called serious underscore errors

dot log.

So likewise if you look at it you will be able to understand how pipes are so powerful for for

enabling multiple commands to be executed especially commands that are dependent on the

pre output previous command because of which it is going to be behaving in a different

manner and its going to give us a different output likewise we could actually sort of serialise

the execution of the different commands to the pipe symbols especially the related commands

and also the dependent commands in such a way that we finally get the output whatever we

require even after different commands have actually process the outputs in a serialised

fashion.

(Refer Slide Time: 17:35)

So we will find as you keep practicing more and more commands and writing shell script

subsequently the pipes is actually one of the most powerful features that is very very

commonly used by administrators typically.

(Refer Slide Time: 17:51)

 So there is a standard error also that is actually available in which all the error messages are

expected to be getting redirected by the application. So if I for example want to give out an

error message I am expected not to send it out to my standard output but to send it to my

standard error. So the main reason for having the standard error different as compared to a

standard output is that if I have a standard error separately I will be able to process all the

error messages in an independent manner as compared to all the standard output messages

that would be typically coming in as part of my standard output, right? So even though the

default location for both my standard output and standard error is my terminal window.

(Refer Slide Time: 18:40)

Because of the fact that UNIX is actually treating as a different file I will be able to

selectively redirect the content of standard error to a different location, right? So as given in

this example so we are basically saying here that I want to display the contents of F1 F2 and

no file I don't want the display it is a standard output but I want the contents to be displayed

on to this file redirected to this file because we have used a standard output redirection here.

On the other hand if there was any error that has actually happened as part of the execution of

the command we want those error messages to go into this particular file right?

So that is the reason why we are using a two greater than or a two double greater than also

could be used wherein whether we want to just write the contents as a standard error contents

or we want to append the contents into the given file name appropriately we can either use

two greater than or two double greater than respectively right? So in that way number 2 is

actually used in this particular command line to denote that we are trying to redirect the

standard error to a different location as compared to the redirection of the standard output

Thank you.

