
Information Security
Shri Vasan V S, Principal Consultant

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Module 19
LINUX Task Control

So this module we will actually be talking about the different kinds of control mechanism

that we have for starting a task and managing a task once it is actually started in the command

line.

(Refer Slide Time: 00:26)

 So as we were discussing earlier LINUX operating system is sort of supporting through pre-

emptive multitasking. So now what is exactly mean by True pre-emptive multitasking will

just do a quick recap .

So multitasking is a mechanism by which the system will be able to run in task

independently and same time multiple task could be run and then pre-emptive essentially

means that the system is not going to be allowing 1 task to be waiting for a long period of

time just because another task has been running for a certain amount of time.

 So the system is going to preamp the current running task and give the processor to the

another task that is actually waiting for for to be running and thereby the Unix OS is actually

treated as a very very true a pre-emptive multi tasking system. So its a mechanism by which I

will be able to run multiple multiple tasks in parallel at the same time.

(Refer Slide Time: 01:31)

And also about them if they basically try to correct any any other portion of the memory for

which it is actually doesn't have any rights right? so there could be some processes that

inadvertently tries to Access the Memory area of another process for which it does not have a

right, so all those kind of processes will be immediately killed by the OS not making it run

subsequently after that.

It also has a mechanism by which it will be able to choose which program should we needed

to run at any point in time and also what input the programs might take and where the output

basically goes to. So this is basically what we were seeing as the input redirection and output

redirection as well as other re direction in our earlier module.

(Refer Slide Time: 02:23)

Now what exactly process in Unix as , so as we were discussing in our earlier module we

said that everything in a Unix is a file let’s put in a different way in everything in Unix is

not a file is a process right? So what is mean by this is that a process is something which is

actually alive and running on Unix whereas a file is something that is statically present in

some part of my system without having a so-called life in it right?

So its going to be sort of resident in some corner of my let us say storage mechanism whether

it be my pendrive or my hard disc or whatever it is. Whereas if that file is for example is an

executable file and I go start that file by either typing into the command line or by double

clicking on it in my bro in my Explorer window the moment the file is actually read from my

hard disc location and then gets loaded into my memory that file basically magically

becomes a running process right?

So Unix basically now creates a process copies the content of the executive instructions in the

file makes it as a Process makes it run and then the beauty here is that I could actually have

several instances the same program running at the same time.

So for example everybody wants to run the program called LS on a system. So let’s say there

are five users logged in the system and at the milli second granularity time frame all the five

users logged in the system currently wants to run the same LS command all of them will be

able to execute the same command same time, right? So there in the system basically

supports multiple instances the same program getting executed the same time in a very very

seamless manner. So there are different types of data that is typically associated the process

which we would have actually seen very briefly when we talked about the different parts of

the operating system initially.

(Refer Slide Time: 04:30)

So you have what are the open files are maintained by the Process what is the amount of

memory that has been actually allocated stack the process ID being the unique ID identified

that is identified that through which the process is actually identified in system so what is a

parent process what is a Priority the process what is the current state the process like whether

it is sleeping whether it is running or whether it is waiting for IO to complete or whether it is

in a Zombie state all those kind of data are associated with each and every process that is

actually running in a system.

So because of the fact that Unix is basically supporting multitasking one very important

features that is actually being made available on Unix is to make a particular task run in the

background. Now what is mean by running in the background is that by default when you

type a command in the command line and press the enter key this command is no going to be

read and loaded in the memory and that is going to become a process and starts running.

 So by default we tell that this command is actually running in the foreground because they

unless and until the command is completed so the command will not be complete without

without which without the command getting completed you will not be able to give any other

command or job for the shell to run that is typically what we mean when we say the

command is actually running in the phorground now for the command to run in the

background the main reason for giving this kind of functionality is that we will understand

that there will be certain commands that will actually take a very very long time to complete.

Now I will be requiring certain other jobs to be done at the same time when this command is

being run in the background so that I don't have to wait for a long period of time for

submitting the next command to the system so that is basically the reason why the OS is

actually supporting a mechanism by which a job could be given to be running in the

background and thereby immediately getting the prompt back for the user to give the next

command to the shell.

So if I have this kind of requirement how do I typically get it done I use the ampersand

character what we call as the and operator also in the programming parlance I use the

character at the end of the line to denote to my shell that this command should be run as part

of a background task and not as part of the foreground task so whenever I give this kind of

ampersand character the shell will retreat that this command should be run in the

background start this process make it as a background job and then immediately come back

to the shell from so that the user can basically type the next command or the next tool that he

wants to run as part of using the shell so that is basically The main advantage in the reason

behind why the the Unix operating system gives you a mechanism to run a task in the

background.

(Refer Slide Time: 07:49)

So when I’m running multiple task in the background I would need to know at any point in

time what are the different tasks that is running. So especially if I have basically given

different tasks and I want to know what is the task that has been given till date and what are

the status of each of that and that is the reason why we have the command called jobs. So if

I say jobs it will basically return me back and display the list of the current background jobs it

is running.

 So out of the listed task if I want to basically bring any of those task to the foreground I

can use the fg command where in I say FG followed by the percentage and the number. So

if I want to bring down the second command I say fg percent 2 and then the number will be

the number that s actually getting matched with what is printed as part of the output of my

jobs command. So if I want to bring the second command out as the foreground process I say

fg percent 2 right?

And if I don't give this percent it basically tries to put the last command that has been given

in the background into the foreground. Now after the task has sufficiently run in the

foreground and I want to shift it back into the background I say control Z; control Z

essentially is a temporary suspend character the suspend key that will give in the Shell to the

currently running process after which I can type the command called bg; bg means to put the

currently suspended task in the back end right in the background .

So this is the equivalent to running the command with the ampersand character at the time of

starting the command Excel right? Now another command that we need to understand as part

of the job control is a command called kill which is typically used to kill the command that

is associated with that particular background job. So if I say kill followed by percent 1 it

will basically try to kill this particular task that has actually been listed as a first process as

part of the job output .

(Refer Slide Time: 10:07)

So that will basically about the the job that has been passed here right? So again an example

of how you could typically make use of this. So if I say kill percent 1 it reports back

terminated and then tells me whatever was a job that was actually given for that particular

background task.

(Refer Slide Time: 10:25)

So if I want to find out the different processes that are right now running on the system

either by myself or on the entire system I could actually use the minus aux option to the PS

command on minus edf option on some system based systems where in it will bring me the

complete output which will contain on a per process basis what are the what is the user id

which has actually started this particular process what is the PID that is a process ID how

much of CPU has been used?

How much memory has been used? What is the virtual process size? What is a resident

process size? what is a terminal on which it has been started? What is the current status?

Whether it is running whether it is getting sleepy? whether it is currently sleeping waiting for

let us say some I/O to complete or whether it is getting page or whether it is a zombie

process, right?

So when was it started how much time it has actually run and what is the corresponding

command. So for every process in the currently running system with these options to the ps

command we get all these details display which gives sense of where each command is

currently and what kind of resources each command is actually occupying.

(Refer Slide Time: 11:46)

 So talk is another command that will give me the complete process activity on a system the

most important feature of the top command is that for every few seconds typically like

around 5 seconds the output will be getting automatically refresh so if I really want to find

out what are the type of processes that are actually consuming the maximum amount of CPU

or the maximum amount of memory at any point in time in my system then this command is

something which is extremely useful for system administrator wherein he tries to print out the

details in a very very dynamic manner and gets continuously refresh every few seconds or so;

so that with this kind of information the system administrator typically will be able to find out

what are the kind of processes that are sort of consuming the maximum amount of resources,

right? So if I want to basically kill a particular task which is actually getting listed in the top

output I could just press the key k and then followed by the process ID and then it will

automatically try to kill that particular process assuming that this particular person has

permission to kill the process.

(Refer Slide Time: 13:00)

So otherwise I could also get the process kill by using different commands I could use kill

followed by the PIDs to the kill command followed by the PIDs will try to send a kill signal

to each of those PIDs. So when I say kill minus 9 followed by PIDs it will send an

immediate termination signal what we call as a Sig term to each of the the the process IDs

that is mentioned here and assuming that the user who is running the kill command has

permission to kill that particular process ID or AP is a Super user so if either of this condition

is satisfied then that particular set of PIDs that is mentioned here one or more PIDs that is

mentioned here will be killed successfully by the system. So if I say kill minus 9 minus 1 it

will kill all the processes the current user that is being currently run.

So if a user called user 1 as actually logged in and they have started like 5 different

commands of 5 different applications and after that if he has basically running the command

for kill minus 9 minus 1 all those process applications will be getting killed and then he will

come back to the state whatever he was in before even if he had actually logged into the

system. Because even the shell command that was actually available to him as part of a

successful login that also will be getting killed if this particular come and kill is run with

minus 9 minus 1 the shell process also is the process started by that particular user because of

which the cell process also will be getting killed with this particular command.

(Refer Slide Time: 14:46)

 Alternatively we can also kill all or xkill to kill all the processes which are running this

particular command again I should have permission as a Superuser typically or as a normal

user if all the commands at a running as processes right now have been started by me then I

will be able to run the kill all come and successfully on all those processes right? xscale is

actually used to kill any kind of a graphical application that you might be running.

(Refer Slide Time: 15:19)

 So the next way of the way that I typically used commands as part of the job control is

running them in a sequential manner. So what we mean by sequential manner is if I want to

run multiple commands together in a single command line I could use semicolon as as as a

separator and then run them so here it will first run the command echo that is given here in

this example and since there is a semi colon it is right to run the second command then there

is a semi colon it will run the third command.

 So in this case each command which has been given in the command line delimited by

semicolon will be run one after the other by the shell and in that way it is also a sort of a job

control where in they are Run one after the other sequentially even though there are being

multiple commands given in a single command line. Now another way of running the

sequential commands is using what is called as a logical or the logical and operator when

each of these commands run and when they do not run is actually dependent on what the

what is the status of the the previous command execution.

So if I basically say that I want to run this first command more God. So I will try to display

the contents of this file call God and if that particular command is not successful when will it

not be successful when this particular file does not exist right? what it will actually do is it

will now encounter the logical or, so as far as the truth table of or is concerned the overall

value result value of the entire expression is true if either one is actually true right?

 So because of the fact that the first one that has been given as part of this logical or

expression is false in a scenario where this particular file is not existing the shell will actually

try to go and execute the second command that is actually been given here, right? And what is

a command that is actually been given here it is an echo command where in this particular

message is going to be getting displayed right?

On the other hand if the first one was successful because of the fact that one of them has been

successful out of the the first Command or the second command the shell will not go and

execute the second command because for the logical truth table of an or condition is one of

them is true then it is actually sufficient, right? So in this particulars scenario the second

command is actually going to be getting executed only if the first one is actually failing.

 On the other hand when we actually say you want use and operator, the and operator will be

done only if the previous one has been successful because like we were saying the truth table

of or condition for the and condition the truth table essentially means that the whole value is

true only if the resultant Sub expressions are true So in this particular case if you see we have

said that they want to list the contents of the home directory of the SD6 user and for example

if this SD6 user is not existing or the home directory is not existing there is no point in trying

list the contents of this sub directories or files of this home directory, right? So that is the

reason why the logical and operator is used here.

 So if this was successful then I will have the second command getting executed also and the

output of this command is also redirected to another file. So because of the fact that the

logical truth table value of an and operation will be 1 only both of them are 1 The if only if

the first condition first command is actually successful the shell will try to go and execute the

second part of the the logical conditional operator expression and if this was not successful

for any reason maybe that SD6 was not a valid user because we are trying to with the users it

is tilde characters you are trying to refer to the home directory of the SD6 user.

So if SD6 user is not existing nonexistent user there will be no home directory of SD6 user or

if the SD6 user is a real user but there's been no home directory configure this particular

user in either case this condition will fail if this condition fails then there is no point in

actually running it and therefore we are using and operator the and operator here and because

for the and operation both of them as successful and in this particular case it has been a

failure the shell will not try to run the second part of the the second expression that has been

given here also.

On the other hand if this has been a successful where in the SD6 is valid user and we also

have a home directory for the sd6 user then that sell will actually try to run the second part of

the expression also because and operation is given and this and operation will be running

when we have the first part of the expression to be a true resultant value so in this way we can

actually use conditional operator like or or and to make the commands executed in a

sequential manner depending on what has been the output of the previous command the next

command can either be run or not be run by using the appropriate logical conditional operator

Thank you!

